AAPS PharmSciTech

, Volume 13, Issue 2, pp 422–430 | Cite as

Effect of Polysorbate 80 Quality on Photostability of a Monoclonal Antibody

  • Swita R. SinghEmail author
  • Jingming Zhang
  • Courtney O’Dell
  • Ming-Ching Hsieh
  • Joel Goldstein
  • Joseph Liu
  • Arvind Srivastava
Research Article


Polysorbate 80 is one of the key components of protein formulations. It primarily inhibits interfacial damage of the protein molecule due to mechanical stress during shipping and handling. However, polysorbate 80 also affects the formulation photostability. Exposure to light of polysorbate 80 aqueous solution results in peroxide generation, which in turn may result in oxidation of the susceptible amino acid residues in the protein molecule. The purpose of this study was to determine if the photostability of our proprietary IgG1 monoclonal antibody formulation containing polysorbate 80 is affected by the quality (grade/vendor) of polysorbate 80. Following four types of polysorbate80 were tested: (1) Polysorbate 80 Super-Refined, Mallinckrodt Baker, (2) Polysorbate 80 NF, Mallinckrodt Baker, (3) Polysorbate 80 NF, EMD Chemicals, and (4) Ultra-pure Polysorbate 80 (HX), NOF Corporation. The samples were exposed to light as per ICH guidelines Q1B. The results of the study show that photostability of the antibody formulation is indeed affected by the quality of polysorbate 80. This study underscores the importance of carefully choosing the quality of polysorbate 80 to ensure the robustness of formulation.

Key words

antibody photostability polysorbate 80 protein stability Super-Refined Polysorbate 80 


Conflicts of interest declaration

The authors have no personal financial or non-financial conflicts of interest in the publication of results contained in this manuscript.


  1. 1.
    Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27:544–75. doi: 10.1007/s11095-009-0045-6.PubMedCrossRefGoogle Scholar
  2. 2.
    Kiese S, Papppenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97:4347–66. doi: 10.1002/jps.21328.PubMedCrossRefGoogle Scholar
  3. 3.
    Eckhardt BM, Oeswein JQ, Bewley TA. Effect of freezing on aggregation of human growth hormone. Pharm Res. 1991;8:1360–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen V, Kim KJ, Fane AG. Effect of membrane morphology and operation on protein deposition in ultrafiltration membranes. Biotechnol Bioeng. 1995;47:174–80. doi: 10.1002/bit.260470208.PubMedCrossRefGoogle Scholar
  5. 5.
    Bam NB, Cleland JL, Randolph TW. Molten globule intermediate of recombinant human growth hormone: stabilization with surfactants. Biotechnol Prog. 1996;12:801–9. doi: 10.1021/bp960068b.PubMedCrossRefGoogle Scholar
  6. 6.
    Chang BS, Kendrick BS, Carpenter JF. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J Pharm Sci. 1996;85:1325–30. doi: 10.1021/js960080y.PubMedCrossRefGoogle Scholar
  7. 7.
    Katakam M, Bell LN, Banga AK. Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci. 1995;84:713–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97:2924–35. doi: 10.1002/jps.21190.PubMedCrossRefGoogle Scholar
  9. 9.
    Donbrow M, Azaz E, Pillersdorf A. Autoxidation of polysorbates. J Pharm Sci. 1978;67:1676–81.PubMedCrossRefGoogle Scholar
  10. 10.
    Houde D, Kauppinen P, Mhatre R, Lyubarskaya Y. Determination of protein oxidation by mass spectrometry and method transfer to quality control. J Chromatogr A. 2006;1123:189–98. doi: 10.1016/j.chroma.2006.04.046.PubMedCrossRefGoogle Scholar
  11. 11.
    Kerwin BA, Remmele Jr RL. Protect from light: photodegradation and protein biologics. J Pharm Sci. 2007;96:1468–79. doi: 10.1002/jps.20815.PubMedCrossRefGoogle Scholar
  12. 12.
    Ding S. Quantitation of hydroperoxides in the aqueous solutions of non-ionic surfactants using polysorbate 80 as the model surfactant. J Pharm Biomed Anal. 1993;11:95–101.PubMedCrossRefGoogle Scholar
  13. 13.
    Jaeger J, Sorensen K, Wolff SP. Peroxide accumulation in detergents. J Biochem Biophys Methods. 1994;29:77–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Azaz E, Donbrow M. Proceedings: Incompatibility of non-ionic surfactants with phenols in relation to binding constants and cloud points. J Pharm Pharmacol. 1975;27(Suppl?-2):69P.PubMedGoogle Scholar
  15. 15.
    Coates LV, Pashley MM, Tattersall K. The stability of antibacterials in polyethylene glycol mixtures. J Pharm Pharmacol. 1961;13:620–4.PubMedCrossRefGoogle Scholar
  16. 16.
    James KC, Leach RH. A stability study of chloramphenicol in topical formulations. J Pharm Pharmacol. 1970;22:607–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91:2252–64. doi: 10.1002/jps.10216.PubMedCrossRefGoogle Scholar
  18. 18.
    Knepp VM, Whatley JL, Muchnik A, Calderwood TS. Identification of antioxidants for prevention of peroxide-mediated oxidation of recombinant human ciliary neurotrophic factor and recombinant human nerve growth factor. PDA J Pharm Sci Technol. 1996;50:163–71.PubMedGoogle Scholar
  19. 19.
    Qi P, Volkin DB, Zhao H, Nedved ML, Hughes R, Bass R, Yi SC, Panek ME, Wang D, Dalmonte P, Bond MD. Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci. 2009;98:3117–30. doi: 10.1002/jps.21617.PubMedCrossRefGoogle Scholar
  20. 20.
    Lam XM, Yang JY, Cleland JL. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci. 1997;86:1250–5. doi: 10.1021/js970143s.PubMedCrossRefGoogle Scholar
  21. 21.
    Davies MJ, Truscott RJ. Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B. 2001;63:114–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Grossweiner LI. Photochemistry of proteins: a review. Curr Eye Res. 1984;3:137–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Becker GW, Tackitt PM, Bromer WW, Lefeber DS, Riggin RM. Isolation and characterization of a sulfoxide and a desamido derivative of biosynthetic human growth hormone. Biotechnol Appl Biochem. 1988;10:326–37.PubMedGoogle Scholar
  24. 24.
    Frelinger 3rd AL, Zull JE. The role of the methionine residues in the structure and function of parathyroid hormone. Arch Biochem Biophys. 1986;244:641–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Nabuchi Y, Fujiwara E, Ueno K, Kuboniwa H, Asoh Y, Ushio H. Oxidation of recombinant human parathyroid hormone: effect of oxidized position on the biological activity. Pharm Res. 1995;12:2049–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Sasaoki K, Hiroshima T, Kusumoto S, Nishi K. Oxidation of methionine residues of recombinant human interleukin 2 in aqueous solutions. Chem Pharm Bull (Tokyo). 1989;37:2160–4.CrossRefGoogle Scholar
  27. 27.
    Teh LC, Murphy LJ, Huq NL, Surus AS, Friesen HG, Lazarus L, Chapman GE. Methionine oxidation in human growth hormone and human chorionic somatomammotropin. Effects on receptor binding and biological activities. J Biol Chem. 1987;262:6472–7.PubMedGoogle Scholar
  28. 28.
    Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol. 2008;9:468–81.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Swita R. Singh
    • 1
    Email author
  • Jingming Zhang
    • 1
  • Courtney O’Dell
    • 1
  • Ming-Ching Hsieh
    • 1
  • Joel Goldstein
    • 1
  • Joseph Liu
    • 1
  • Arvind Srivastava
    • 1
  1. 1.ImClone Systems, a Wholly Owned Subsidiary of Eli Lilly & Co.BranchburgUSA

Personalised recommendations