AAPS PharmSciTech

, Volume 13, Issue 1, pp 336–343 | Cite as

Polymeric Micelles of PEG-PE as Carriers of All-Trans Retinoic Acid for Stability Improvement

  • Angkana Wichit
  • Anothai Tangsumranjit
  • Tasana Pitaksuteepong
  • Neti Waranuch
Research Article

Abstract

The topical application of all-trans retinoic acid (ATRA) is an effective treatment for several skin disorders, including photo-aging. Unfortunately, ATRA is susceptible to light, heat, and oxidizing agents. Thus, this study aimed to investigate the ability of polymeric micelles prepared from polyethylene glycol conjugated phosphatidylethanolamine (PEG-PE) to stabilize ATRA under various storage conditions. ATRA entrapped in polymeric micelles with various PEG and PE structures was prepared. The critical micelle concentrations were 97–243 μM, depending on the structures of the PEG and PE molecules. All of the micelles had particle diameters of 6–20 nm and neutral charges. The highest entrapment efficiency (82.7%) of the tested micelles was exhibited by ATRA in PEG with a molecular weight of 750 Da conjugated to dipalmitoyl phosphatidylethanolamine (PEG750-DPPE) micelles. The PEG750-DPPE micelle could significantly retard ATRA oxidation compared to ATRA in 75% methanol/HBS solution. Up to 87% of ATRA remained in the PEG750-DPPE micelle solution after storage in ambient air for 28 days. This result suggests that PEG750-DPPE micelle can improve ATRA stability. Therefore, ATRA in PEG750-DPPE micelle is an interesting alternative structure for the development of cosmeceutical formulations.

KEY WORDS

all-trans retinoic acid chemical stability oxidation phosphatidylethanolamine polymer polymeric micelles polyethylene glycol conjugated 

Notes

Acknowledgments

The authors are grateful for financial support from Naresuan University, Thailand.

References

  1. 1.
    Fisher GJ, Esmann J, Griffiths CEM, et al. Cellular, immunologic and biochemical characterization of topical retinoic acid-treated human skin. J Invest Dermatol. 1991;96:699–707.PubMedCrossRefGoogle Scholar
  2. 2.
    Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997;337:1419–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Gilchrest BA. Treatment of photodamage with topical tretinoin: an overview. J Am Acad Dermatol. 1997;36:S27–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Cho S, Lowe L, Hamilton TA, Fisher GJ, Voorhees JJ, Kang S. Long-term treatment of photoaged human skin with topical retinoic acid improves epidermal cell atypia and thickens the collagen band in papillary dermis. J Am Acad Dermatol. 2005;53:769–764.CrossRefGoogle Scholar
  5. 5.
    Sigma-Aldrich Knowledgebase. Generic EU MSDS. Material safety data sheet of all-trans retinoic acid, Singapore. 2006. http://www.sigma-aldrich.com. Accessed 26 Jun 2007.
  6. 6.
    Kochhar DM, Christian MS. Tretinoin: a review of the nonclinical developmental toxicology experience. J Am Acad Dermatol. 1997;36:S47–59.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim BH, Lee YS, Kang KS. The mechanism of retinol-induced irritation and its application to anti-irritant development. Toxicol Lett. 2003;146:65–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Brisaert MG, Everaerts I, Plaizier-Vercammen JA. Chemical stability of tretinoin in dermatological preparations. Pharm Acta Helv. 1995;70:161–6.CrossRefGoogle Scholar
  9. 9.
    Ioele G, Cione E, Risoli A, Genchi G, Ragno G. Accelerated photostability study of tretinoin and isotretinoin in liposome formulations. Int J Pharm. 2005;293:251–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Panzella L, Manini P, Napolitano A, D’Ischia M. Free radical oxidation of (E)-retinoic acid by the Fenton reagent: competing epoxidation and oxidative breakdown pathways and novel products of 5,6-epoxy retinoic acid transformation. Chem Res Toxicol. 2004;17:1716–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Elbaum DJ. Comparison of the stability of topical isotretinoin and topical tretinoin and their efficacy in acne. J Am Acad Dermatol. 1988;19:486–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Lovat PE, Irving H, Malcolm AJ, Pearson ADJ, Christopher PFR. 9-cis retinoic acid-a better retinoid for the modulation of differentiation, proliferation and gene expression in human neuroblastoma. J Neurooncol. 1997;31:85–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Duell EA, Astrom A, Griffiths CEM, Chambon P, Voorhees JJ. Human skin levels of retinoic acid and cytochrome P-450 derived 4-hydroxy retinoic acid after topical application of retinoic acid in vivo compared to concentrations required to stimulate retinoic acid receptor-mediated transcription in vitro. J Clin Invest. 1992;90:1269–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Samokyszyn VM, Freyaldenhoven MA, Chang HC, Freeman JP, Compadre RL. Regiospecificity of peroxyl radical addition to (E)-retinoic acid. Chem Res Toxicol. 1997;10:795–801.PubMedCrossRefGoogle Scholar
  15. 15.
    Zile MH, Inhorn RC, Deluca HF. The biological activity of 5,6-epoxy retinoic acid. J Nutr. 1980;110:2225–30.PubMedGoogle Scholar
  16. 16.
    Brisaert M, Gabiels M, Matthijs V, Plaizier-Vercammen J. Liposomes with tretinoin: a physical and chemical evaluation. J Pharm Biomed Anal. 2001;26:909–17.PubMedCrossRefGoogle Scholar
  17. 17.
    Shimizu K, Tamagawa K, Takahashi N, Takayama K, Maitani Y. Stability and antitumor effects of all-trans retinoic acid loaded liposome contained sterylglucoside mixture. Int J Pharm. 2003;258:45–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Manconi M, Valenti D, Sinico C, Lai F, Loy G, Fadda MA. Niosomes as carriers for tretinoin II. Influence of vesicular incorporation on tretinoin photostability. Int J Pharm. 2003;260:261–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Hwang SR, Lim SJ, Park JS, Kim CK. Phospholipid-based microemulsion formulation of all-trans retinoic acid for parenteral administration. Int J Pharm. 2004;276:175–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Lim SJ, Lee MK, Kim CK. Altered chemical and biological activities of all-trans retinoic acid incorporated in solid lipid nanoparticle powders. J Control Release. 2004;100:53–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2002;2:979–82.CrossRefGoogle Scholar
  22. 22.
    Lukyanov AN, Gao Z, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release. 2003;91:97–102.PubMedCrossRefGoogle Scholar
  23. 23.
    Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56:1273–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 1995;16:295–309.CrossRefGoogle Scholar
  25. 25.
    Kwon GS, Okanob T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21:107–16.CrossRefGoogle Scholar
  26. 26.
    Chang YC, Chu IM. Methoxy poly(ethylene glycol)-b-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur Pol J. 2008;44:3922–30.CrossRefGoogle Scholar
  27. 27.
    Koo OM, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomedicine. 2005;1:77–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Maghraby GMME, Campbell M, Finnin BC. Mechanisms of action of novel skin penetration enhancers: phospholipid versus skin lipid liposomes. Int J Pharm. 2005;305:90–104.PubMedCrossRefGoogle Scholar
  29. 29.
    Liu J, Hu G. Advances in studies of phospholipids as carriers in skin topical application. JNMU. 2007;21:349–53.Google Scholar
  30. 30.
    Asbill CS, Michniak BB. Percutaneous penetration enhancers: local versus transdermal activity. PSTT. 2000;3:36–41.Google Scholar
  31. 31.
    Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta. 2009;1788:2362–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Kirjavainen M, Monkkonen J, Saukkosaari M, Valjakka-Koskela R, Kiesvaara J, Urtti A. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J Control Release. 1999;58:207–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Yokomizo Y. Effects of phospholipids on the percutaneous penetration of drugs through the dorsal skin of the guinea pig, in vitro. 3. The effects of phospholipids on several drugs having different polarities. J Control Release. 1996;42:217–28.CrossRefGoogle Scholar
  34. 34.
    Vos AMD, Kinget R. Study of the penetration-enhancing effect of two nonionic surfactants (cetiol HE and eumulgin B3) on human stratum corneum using differential scanning calorimetry. Eur J Pharmacol. 1993;1:89–93.CrossRefGoogle Scholar
  35. 35.
    Dimitrova B, Poyre M, Guiso G, Badiali A, Caccia S. Isocratic reversed-phase liquid chromatography of all-trans retinoic acid and its major metabolites in new potential supplementary test systems for developmental toxicology. J Chromatogr B. 1996;681:153–60.CrossRefGoogle Scholar
  36. 36.
    Genevive G, Helene DM, Vinayak PS, Ning K, Dusica M, Jean-Christophe L. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109:169–88.CrossRefGoogle Scholar
  37. 37.
    Holmberg K. Handbook of applied surface and colloid chemistry. Chichester: Wiley; 2002.Google Scholar
  38. 38.
    Kim SY, Shin IG, Lee YM, Cho CS, Sung YK. Methoxy poly(ethylene glycol) and caprolactone amphiphilic block polymeric micelle containing indomethacin. II Micelle formation and drug release behaviours. J Control Release. 1998;51:13–22.PubMedCrossRefGoogle Scholar
  39. 39.
    Astafieva I, Zhong XF, Eisenberg A. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules. 1993;26:7339–52.CrossRefGoogle Scholar
  40. 40.
    Georgiev GA, Sarker DK, Al-Hanbali O, Georgiev GD, Lalchev Z. Effects of poly(ethylene glycol) chains conformational transition on the properties of mixed DMPC/DMPE-PEG thin liquid films and monolayers. Colloids Surf B Biointerfaces. 2007;59:184–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B Biointerfaces. 1999;16:3–27.CrossRefGoogle Scholar
  42. 42.
    Berbenni V, Marini A, Bruni G, Cardini A. Thermoanalytical and spectroscopic characterisation of solid-state retinoic acid. Int J Pharm. 2001;221:123–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Ortiz A, Aranda FJ, Gomez-Fernandez JC. Interaction of retinol and retinoic acid with phospholipid membranes. A differential scanning calorimetry study. BBA. 1992;1106:282–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Ortiz A, Aranda FJ, Villalain J, Gomez-Fernandez JC. Influence of retinoids on phosphatidylethanolamine lipid polymorphism. BBA. 1992;1112:226–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Brisaert M, Plaizier-Vercammen J. Investigation on the photostability of a tretinoin lotion andstabilization with additives. Int J Pharm. 2000;199:49–57.PubMedCrossRefGoogle Scholar
  46. 46.
    Woodle MC, Lasic DD. Sterically stabilized liposomes. BBA. 1992;1113:171–99.PubMedGoogle Scholar
  47. 47.
    Woodle MC. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids. 1993;64:249–62.PubMedCrossRefGoogle Scholar
  48. 48.
    Tirosh O, Barenholz Y, Katzhendler J, Priev A. Hydration of polyethylene glycol-grafted liposomes. Biophys J. 1998;74:1371–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Vonarbourg A, Passirani C, Saulnier P, Benoit JP. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Angkana Wichit
    • 1
  • Anothai Tangsumranjit
    • 1
  • Tasana Pitaksuteepong
    • 1
  • Neti Waranuch
    • 1
    • 2
  1. 1.Department of Pharmaceutical Technology, Faculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
  2. 2.Cosmetics and Natural Products Research Center, Faculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand

Personalised recommendations