AAPS PharmSciTech

, Volume 12, Issue 2, pp 593–603 | Cite as

3D Simulation of Internal Tablet Strength During Tableting

  • Simo Matti SiiriäEmail author
  • Osmo Antikainen
  • Jyrki Heinämäki
  • Jouko Yliruusi
Research Article


This study presents a new approach to model powder compression during tableting. The purpose of this study is to introduce a new discrete element simulation model for particle–particle bond formation during tablet compression. This model served as the basis for calculating tablet strength distribution during a compression cycle. Simulated results were compared with real tablets compressed from microcrystalline cellulose/theophylline pellets with various compression forces. Simulated and experimental compression forces increased similarly. Tablet-breaking forces increased with the calculated strengths obtained from the simulations. The calculated bond strength distribution inside the tablets showed features similar to those of the density and pressure distributions in the literature. However, the bond strength distributions at the center of the tablets varied considerably between individual tablets.

Key words

bonding breaking strength compaction simulation tableting 

Supplementary material


(MPEG 4888 kb)


(MPEG 1462 kb)


(MPEG 3504 kb)


  1. 1.
    Santos HMM, Sousa JJMS. Pharmaceutical manufacturing handbook: production and processes. USA: Wiley; 2008.Google Scholar
  2. 2.
    Alderborn G, Nyström C. Pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996.Google Scholar
  3. 3.
    Carstensen JT. Advanced pharmaceutical solids. New York: Marcel Dekker; 2001.Google Scholar
  4. 4.
    Morehead WT. Viscoelastic behavior of pharmaceutical materials during compaction. Drug Dev Ind Pharm. 1992;18(6–7):659–75.CrossRefGoogle Scholar
  5. 5.
    Mitrevej A, Faroongsarng D, Sinchaipanid N. Compression behavior of spray dried rice starch. Int J Pharm. 1996;140(1):61–8.CrossRefGoogle Scholar
  6. 6.
    Guo HX, Heinämäki J, Yliruusi J. Characterization of particle deformation during compression measured by confocal laser scanning microscopy. Int J Pharm. 1999;18(6–7):99–108.CrossRefGoogle Scholar
  7. 7.
    Antikainen O, Yliruusi J. Determining the compression behavior of pharmaceutical powders from the force–distance compression profile. Int J Pharm. 2003;252(1–2):253–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Kettenhagen WR. Process modeling in the pharmaceutical industry using the discrete element method. J Pharm Sci. 2008;98(2):442–70.CrossRefGoogle Scholar
  9. 9.
    Cunningham JC, Sinka IC, Zavaliangos A. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction. J Pharm Sci. 2004;93(8):2022–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Sinka IC, Cunningham JC, Zavaliangos A. Analysis of tablet compaction. II. Finite element analysis of density distribution in convex tablets. J Pharm Sci. 2004;93(8):2040–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Khoei AR. An integrated software environment for finite element simulation of powder compaction processes. Materials Processing Technology. 2002;130–131:168–74.CrossRefGoogle Scholar
  12. 12.
    Khoei AR, Azami AR, Azizi S. Computation modeling of 3D powder compaction processes. Materials Processing Technology. 2007;185:166–72.CrossRefGoogle Scholar
  13. 13.
    Wu CY, Bentham AC, Hancock BC, Best SM, Elliott JA. Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol. 2005;152:107–17.CrossRefGoogle Scholar
  14. 14.
    Wu CY, Hancock BC, Mills A, Bentham AC, Best SM, Elliot JA. Numerical and experimental investigation of capping mechanism during pharmaceutical tablet compaction. Powder Technol. 2008;181:121–29.CrossRefGoogle Scholar
  15. 15.
    Michrafy A, Dodds JA, Kadiri MS. Wall friction in the compaction of pharmaceutical powders: measurement and effect on the density distribution. Powder Technol. 2004;148(1):53–5.CrossRefGoogle Scholar
  16. 16.
    Hassanpour A, Ghadiri M. Distinct element analysis and experimental evaluation of the Heckel analysis of bulk powder compression. Powder Technol. 2004;141:251–61.CrossRefGoogle Scholar
  17. 17.
    Samimi A, Hassanpour A, Ghadiri M. Single and bulk compression of soft granules: experimental study and DEM evaluation. Chem Eng Sci. 2005;60:3993–4004.CrossRefGoogle Scholar
  18. 18.
    Mehrotra A, Chaudhuri B, Faqih A, Tomassone MS, Muzzio FJ. A modelling approach for understanding effects of powder flow properties on tablet weight variability. Powder Technol. 2009;188:295–300.CrossRefGoogle Scholar
  19. 19.
    Sheng Y, Lawrence CJ, Briscoe BJ. Numerical studies of uniaxial powder compaction process by 3D DEM. Eng comput. 2003;21(2/3/4):304–17.Google Scholar
  20. 20.
    Procopio AT, Zavaliangos A. Simulation of multi-axial compaction of granular media from loose to high relative densities. J Mech Phys Solids. 2005;53:1523–51.CrossRefGoogle Scholar
  21. 21.
    Golchert D, Moreno R, Ghadiri M, Litster J. Effect of granule morphology on breakage behaviour during compression. Powder Technol. 2004;143–144:84–96.Google Scholar
  22. 22.
    Antonyuk S, Palis S, Heinrich S. Breakage behaviour of agglomerates and crystals by static loading and impact. Powder Technol. 2011;206(1–2):88–98.CrossRefGoogle Scholar
  23. 23.
    Khanal M, Schubert W, Tomas J. DEM simulation of diametral compression test on particle compounds. Granular Matter. 2005;7:83–90.CrossRefGoogle Scholar
  24. 24.
    Hiestand EN. Tablet bond. I. A theoretical model. Int J Pharm. 1991;67:217–29.CrossRefGoogle Scholar
  25. 25.
    Hiestand EN, Smith DP. Tablet bond. II. Experimental check of model. Int J Pharm. 1991;67:231–46.CrossRefGoogle Scholar
  26. 26.
    Siiriä S, Yliruusi J. Particle packing simulations based on Newtonian mechanics. Powder Technol. 2007;174:82–92.CrossRefGoogle Scholar
  27. 27.
    Johansson B, Wikberg M, Ek R, Alderborn G. Compression behaviour and compactability of microcrystalline cellulose pellets in relationship to their pore structure and mechanical properties. Int J Pharm. 1995;117(1):57–73.CrossRefGoogle Scholar
  28. 28.
    Johansson B, Alderborn G. Degree of pellet deformation during compaction and its relationship to the tensile strength of tablets formed of microcrystalline cellulose pellets. Int J Pharm. 1996;132(1–2):207–20.CrossRefGoogle Scholar
  29. 29.
    Salako M, Podczeck F, Newton JM. Investigations into the deformability and tensile strength of pellets. Int J Pharm. 1998;168(1):49–57.CrossRefGoogle Scholar
  30. 30.
    Eriksson M, Alderborn G. The effect of particle fragmentation and deformation on the interparticulate bond formation process during powder compaction. Pharm Res. 1995;12:1031–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Nayak PR. Random process model of rough surfaces in plastic contact. Wear. 1973;26(3):305–33.CrossRefGoogle Scholar
  32. 32.
    Podczeck F, Newton JM. The evaluation of a three-dimensional shape factor for the quantitative assessment of the sphericity and surface roughness of pellets. Int J Pharm. 1995;124(2):253–9.CrossRefGoogle Scholar
  33. 33.
    Sebhatu T, Alderborn G. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size. Eur J Pharm Sci. 1999;8(4):235–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Stanley P. Mechanical strength testing of compacted powders. Int J Pharm. 2001;227(1–2):27–38.PubMedCrossRefGoogle Scholar
  35. 35.
    Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59(5):688–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Hellen L, Yliruusi J. Process variables of instant granulator and spheroniser: III. Shape and shape distribution of pellets. Int J Pharm. 1993;96:217–23.CrossRefGoogle Scholar
  37. 37.
    Train D. Transmission of forces through a powder mass during the process of pelleting. Trans Inst Chem Eng. 1957;35:258–66.Google Scholar
  38. 38.
    Macleod HM, Marshall K. The determination of density distributions in ceramic compacts using autoradiography. Powder Technol. 1977;16:107–22.CrossRefGoogle Scholar
  39. 39.
    EIliazadeh B, Briscoe BJ, Sheng Y. Investigating density distributions for tablets of different geometry during the compaction of pharmaceuticals. Part Sci Technol. 2003;21:303–16.CrossRefGoogle Scholar
  40. 40.
    Frenning G. Analysis of pharmaceutical powder compaction using multiplicative hyperelasto-plastic theory. Powder Technol. 2007;172:103–12.CrossRefGoogle Scholar
  41. 41.
    Morisseau KM, Rhodes CT. Near-infrared spectroscopy as a nondestructive alternative to conventional tablet hardness testing. Pharm Res. 1997;14:108–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Krieger M, Fähler FJ, Baumgartner K. Determination of tablet hardness with strain gauge equipped instruments. Drug Dev Ind Pharm. 1995;21(19):2201–12.CrossRefGoogle Scholar
  43. 43.
    Dahima R, Pachori A, Netam S. Formulation and evaluation of mouth dissolving tablet containing amlodipine besylate solid dispersion. International Journal of ChemTech Research. 2010;2(1):706–15.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2011

Authors and Affiliations

  • Simo Matti Siiriä
    • 1
    Email author
  • Osmo Antikainen
    • 1
  • Jyrki Heinämäki
    • 1
    • 2
  • Jouko Yliruusi
    • 1
  1. 1.Division of Pharmaceutical Technology, Faculty of PharmacyUniversity of HelsinkiViikinkaari 5 EFinland
  2. 2.Department of Pharmacy, Faculty of MedicineUniversity of TartuTartuEstonia

Personalised recommendations