AAPS PharmSciTech

, Volume 12, Issue 1, pp 62–76 | Cite as

Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery

Review Article Theme: Advanced Technologies for Oral Controlled Release

Abstract

Lipid nanoparticles based on solid matrix have emerged as potential drug carriers to improve gastrointestinal (GI) absorption and oral bioavailability of several drugs, especially lipophilic compounds. These formulations may also be used for sustained drug release. Solid lipid nanoparticle (SLN) and the newer generation lipid nanoparticle, nanostructured lipid carrier (NLC), have been studied for their capability as oral drug carriers. Biodegradable, biocompatible, and physiological lipids are generally used to prepare these nanoparticles. Hence, toxicity problems related with the polymeric nanoparticles can be minimized. Furthermore, stability of the formulations might increase than other liquid nano-carriers due to the solid matrix of these lipid nanoparticles. These nanoparticles can be produced by different formulation techniques. Scaling up of the production process from lab scale to industrial scale can be easily achieved. Reasonably high drug encapsulation efficiency of the nanoparticles was documented. Oral absorption and bioavailability of several drugs were improved after oral administration of the drug-loaded SLNs or NLCs. In this review, pros and cons, different formulation and characterization techniques, drug incorporation models, GI absorption and oral bioavailability enhancement mechanisms, stability and storage condition of the formulations, and recent advances in oral delivery of the lipid nanoparticles based on solid matrix will be discussed.

Key words

bioavailability gastrointestinal absorption lipid nanoparticle oral delivery 

References

  1. 1.
    Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.PubMedGoogle Scholar
  2. 2.
    Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.PubMedGoogle Scholar
  3. 3.
    Radtke M, Souto EB, Müller RH. Nanostructured Lipid Carriers: a novel generation of solid lipid drug carriers. Pharm Technol Eur. 2005;17(4):45–50.Google Scholar
  4. 4.
    Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4 SPEC. ISS):278–87.PubMedGoogle Scholar
  5. 5.
    Muller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target. 1996;4(3):161–70.PubMedGoogle Scholar
  6. 6.
    Ravi Kumar MN. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci. 2000;3(2):234–58.PubMedGoogle Scholar
  7. 7.
    Shidhaye SS, Vaidya R, Sutar S, Patwardhan A, Kadam VJ. Solid lipid nanoparticles and nanostructured lipid carriers—innovative generations of solid lipid carriers. Curr Drug Deliv. 2008;5(4):324–31.PubMedGoogle Scholar
  8. 8.
    Chen DB, Yang TZ, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull. 2001;49(11):1444–7.PubMedGoogle Scholar
  9. 9.
    Fundaro A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res. 2000;42(4):337–43.PubMedGoogle Scholar
  10. 10.
    Freitas C, Muller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int J Pharm. 1998;168(2):221–9.Google Scholar
  11. 11.
    Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN(TM)) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47(2):125–32.PubMedGoogle Scholar
  12. 12.
    Freitas C, Muller RH. Stability determination of solid lipid nanoparticles (SLN®) in aqueous dispersion after addition of electrolyte. J Microencapsul. 1999;16(1):59–71.PubMedGoogle Scholar
  13. 13.
    Dingler A, Gohla S. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul. 2002;19(1):11–6.PubMedGoogle Scholar
  14. 14.
    Gohla SH, Dingler A. Scaling up feasibility of the production of solid lipid nanoparticles (SLN). Pharmazie. 2001;56(1):61–3.PubMedGoogle Scholar
  15. 15.
    Manjunath K, Ready JS, Venkateswarlu V. Solid lipid nanoparticles as drug delivery systems. Meth Find Exp Clin Pharmacol. 2005;27(2):127–44.Google Scholar
  16. 16.
    Charman WN. Lipids, lipophilic drugs, and oral drug delivery—some emerging concepts. J Pharm Sci. 2000;89(8):967–78.PubMedGoogle Scholar
  17. 17.
    Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82.PubMedGoogle Scholar
  18. 18.
    Charman WN, Porter CJH. Lipophilic prodrugs designed for intestinal lymphatic transport. Adv Drug Deliv Rev. 1996;19(2):149–69.Google Scholar
  19. 19.
    Holm R, Porter CJH, Mullertz A, Kristensen HG, Charman WN. Structured triglyceride vehicles for oral delivery of halofantrine: examination of intestinal lymphatic transport and bioavailability in conscious rats. Pharm Res. 2002;19(9):1354–61.PubMedGoogle Scholar
  20. 20.
    Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50(1–2):61–80.PubMedGoogle Scholar
  21. 21.
    Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release. 2008;127(2):97–109.PubMedGoogle Scholar
  22. 22.
    Chen Y, Dalwadi G, Benson HA. Drug delivery across the blood–brain barrier. Curr Drug Deliv. 2004;1(4):361–76.PubMedGoogle Scholar
  23. 23.
    Souto EB, Doktorovova S, Gonzalez-Mira E, Egea MA, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res. 2010;35(7):537–52.PubMedGoogle Scholar
  24. 24.
    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.PubMedGoogle Scholar
  25. 25.
    Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.PubMedGoogle Scholar
  26. 26.
    Garcia-Fuentes M, Prego C, Torres D, Alonso MJ. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 2005;25(1):133–43.PubMedGoogle Scholar
  27. 27.
    Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release. 2005;107(2):215–28.PubMedGoogle Scholar
  28. 28.
    Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, et al. Oral apomorphine delivery from solid lipid nanoparticleswith different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J Pharm Sci. 2010 (in press).Google Scholar
  29. 29.
    Varshosaz J, Minayian M, Moazen E. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J Liposome Res. 2010;20(2):115–23.PubMedGoogle Scholar
  30. 30.
    Varshosaz J, Tabbakhian M, Mohammadi MY. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J Liposome Res. 2010;20(4):286–96.PubMedGoogle Scholar
  31. 31.
    Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm. 2007;335(1–2):167–75.PubMedGoogle Scholar
  32. 32.
    Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2(4):743–9.PubMedGoogle Scholar
  33. 33.
    Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2010 (in press).Google Scholar
  34. 34.
    Yang R, Gao R, Li F, He H, Tang X. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev Ind Pharm. 2010 (in press).Google Scholar
  35. 35.
    Hu L, Xing Q, Meng J, Shang C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2010;11(2):582–7.PubMedGoogle Scholar
  36. 36.
    Hu L, Jia H, Luo Z, Liu C, Xing Q. Improvement of digoxin oral absorption in rabbits by incorporation into solid lipid nanoparticles. Pharmazie. 2010;65(2):110–3.PubMedGoogle Scholar
  37. 37.
    Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol. 2004;56(12):1527–35.PubMedGoogle Scholar
  38. 38.
    Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine NBM. 2009;5(2):184–91.Google Scholar
  39. 39.
    Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release. 2006;114(1):53–9.PubMedGoogle Scholar
  40. 40.
    Chen CC, Tsai TH, Huang ZR, Fang JY. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74(3):474–82.PubMedGoogle Scholar
  41. 41.
    Martins S, Silva AC, Ferreira DC, Souto EB. Improving oral absorption of samon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol. 2009;5(1):76–83.PubMedGoogle Scholar
  42. 42.
    Muller RH, Runge SA, Ravelli V, Thunemann AF, Mehnert W, Souto EB. Cyclosporine-loaded solid lipid nanoparticles (SLN®): drug-lipid physicochemical interactions and characterization of drug incorporation. Eur J Pharm Biopharm. 2008;68(3):535–44.PubMedGoogle Scholar
  43. 43.
    Muller RH, Runge S, Ravelli V, Mehnert W, Thunemann AF, Souto EB. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int J Pharm. 2006;317(1):82–9.PubMedGoogle Scholar
  44. 44.
    Saupe A, Gordon KC, Rades T. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm. 2006;314(1):56–62.PubMedGoogle Scholar
  45. 45.
    Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1–2):121–8.PubMedGoogle Scholar
  46. 46.
    Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Supplement 1):S131–55.PubMedGoogle Scholar
  47. 47.
    Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release. 1997;48(2–3):223–36.Google Scholar
  48. 48.
    Jenning V, Lippacher A, Gohla SH. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul. 2002;19(1):1–10.PubMedGoogle Scholar
  49. 49.
    Cavalli R, Caputo O, Marengo E, Pattarino F, Gasco MR. The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie. 1998;53(6):392–6.Google Scholar
  50. 50.
    Schwarz C. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release. 1994;30(1):83–96.Google Scholar
  51. 51.
    Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN®, NLC®, LDC®) for oral drug delivery. Drug Dev Ind Pharm. 2008;34(12):1394–405.PubMedGoogle Scholar
  52. 52.
    Müller RH, Lucks JS, inventors; Arzneistoffträger aus festen Lipidteilchen, Feste Lipidnanosphären (SLN)/medication vehicles made of solid lipid particles (solid lipid nanospheres–SLN) patent EP 0605497 B1. 1996.Google Scholar
  53. 53.
    Gasco MR, inventor Gasco, M. R., assignee. Method for producing solid lipid microspheres having a narrow size distribution patent US5250236. 1993.Google Scholar
  54. 54.
    Cortesi R, Esposito E, Luca G, Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials. 2002;23(11):2283–94.PubMedGoogle Scholar
  55. 55.
    Igartua M, Saulnier P, Heurtault B, Pech B, Proust JE, Pedraz JL, et al. Development and characterization of solid lipid nanoparticles loaded with magnetite. Int J Pharm. 2002;233(1–2):149–57.PubMedGoogle Scholar
  56. 56.
    Bondi ML, Azzolina A, Craparo EF, Lampiasi N, Capuano G, Giammona G, et al. Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. J Drug Target. 2007;15(4):295–301.PubMedGoogle Scholar
  57. 57.
    Sjostrom B, Kaplun A, Talmon Y, Cabane B. Structures of nanoparticles prepared from oil-in-water emulsions. Pharm Res. 1995;12(1):39–48.PubMedGoogle Scholar
  58. 58.
    Shahgaldian P, Da Silva E, Coleman AW, Rather B, Zaworotko MJ. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): a detailed study of preparation and stability parameters. Int J Pharm. 2003;253(1–2):23–38.PubMedGoogle Scholar
  59. 59.
    Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm. 2003;257(1–2):153–60.PubMedGoogle Scholar
  60. 60.
    Hu FQ, Yuan H, Zhang HH, Fang M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm. 2002;239(1–2):121–8.PubMedGoogle Scholar
  61. 61.
    Schubert MA, Muller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles—evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125–31.PubMedGoogle Scholar
  62. 62.
    Charman WN, Stella VJ, editors. Lymphatic transport of drugs. Boca Raton: CRC Press; 1992.Google Scholar
  63. 63.
    Radomska-Soukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):411–8.PubMedGoogle Scholar
  64. 64.
    Xie S, Pan B, Wang M, Zhu L, Wang F, Dong Z, et al. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine Lond. 2010;5(5):693–701.PubMedGoogle Scholar
  65. 65.
    Liu DH, Liu CX, Zou WW, Zhang N. Enhanced gastrointestinal absorption of N-3-O-toluyl-fluorouracil by cationic solid lipid nanoparticles. J Nanopart Res. 2010;12(3):975–84.Google Scholar
  66. 66.
    Zhang J, Fan Y, Smith E. Experimental design for the optimization of lipid nanoparticles. J Pharm Sci. 2009;98(5):1813–9.PubMedGoogle Scholar
  67. 67.
    Anton N, Benoit J-P, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release. 2008;128(3):185–99.PubMedGoogle Scholar
  68. 68.
    Sanjula B, Shah FM, Javed A, Alka A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target. 2009;17(3):249–56.PubMedGoogle Scholar
  69. 69.
    Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN(TM)) dispersions. Int J Pharm. 1998;168(2):221–9.Google Scholar
  70. 70.
    Mukherjee B, Santra K, Pattnaik G, Ghosh S. Preparation, characterization and in vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine. 2008;3(4):487–96.PubMedGoogle Scholar
  71. 71.
    Sahana B, Santra K, Basu S, Mukherjee B. Development of biodegradable polymer-based tamoxifen citrate-loaded nanoparticles and effect of some manufacturing process parameters on them: a physicochemical and in vitro evaluation. Int J Nanomedicine. 2010;5:621–30.PubMedGoogle Scholar
  72. 72.
    Zur Muhlen A, Zur Muhlen E, Niehus H, Mehnert W. Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res. 1996;13(9):1411–6.PubMedGoogle Scholar
  73. 73.
    Souto EB, Mehnert W, Muller RH. Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. J Microencapsul. 2006;23(4):417–33.PubMedGoogle Scholar
  74. 74.
    Estella-Hermoso de Mendoza A, Campanero MA, Mollinedo F, Blanco-Prieto MJ. Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol. 2009;5(4):323–43.PubMedGoogle Scholar
  75. 75.
    Bunjes H, Steiniger F, Richter W. Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir. 2007;23(7):4005–11.PubMedGoogle Scholar
  76. 76.
    Estella-Hermoso de Mendoza A, Rayo M, Mollinedo F, Blanco-Prieto MJ. Lipid nanoparticles for alkyl lysophospholipid edelfosine encapsulation: development and in vitro characterization. Eur J Pharm Biopharm. 2008;68(2):207–13.PubMedGoogle Scholar
  77. 77.
    Jenning V, Mader K, Gohla SH. Solid lipid nanoparticles (SLN) based on binary mixtures of liquid and solid lipids: a (1)H-NMR study. Int J Pharm. 2000;205(1–2):15–21.PubMedGoogle Scholar
  78. 78.
    Küchler S, Herrmann W, Panek-Minkin G, Blaschke T, Zoschke C, Kramer KD, et al. SLN for topical application in skin diseases—characterization of drug–carrier and carrier–target interactions. Int J Pharm. 2010;390(2):225–33.PubMedGoogle Scholar
  79. 79.
    Zimmermann E, Souto EB, Muller RH. Physicochemical investigations on the structure of drug-free and drug-loaded solid lipid nanoparticles (SLN) by means of DSC and 1H NMR. Pharmazie. 2005;60(7):508–13.PubMedGoogle Scholar
  80. 80.
    Braem C, Blaschke T, Panek-Minkin G, Herrmann W, Schlupp P, Paepenmüller T, et al. Interaction of drug molecules with carrier systems as studied by parelectric spectroscopy and electron spin resonance. J Control Release. 2007;119(1):128–35.PubMedGoogle Scholar
  81. 81.
    Lukowski G, Hoell A, Dingler A, Kranold R, Pflegel P. Fractal surface of solid lipid nanoparticles. Proc Control Release Society. 1997;24:631–2.Google Scholar
  82. 82.
    Muller RH, Mehnert W, Lucks JS, Schwarz C, Zur Muhlen A, Weyhers H, et al. Solid lipid nanoparticles (SLN)—an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm. 1995;41(1):62–9.Google Scholar
  83. 83.
    Zur Muhlen A, Mehnert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie. 1998;53(8):552–5.Google Scholar
  84. 84.
    Chakraborty S, Shukla D, Mishra B, Singh S. Lipid—an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73(1):1–15.PubMedGoogle Scholar
  85. 85.
    Crounse RG. Human pharmacology of griseofulvin: the effect of fat intake on gastrointestinal absorption. J Invest Dermatol. 1961;37:529–33.PubMedGoogle Scholar
  86. 86.
    Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46(1–3):75–87.PubMedGoogle Scholar
  87. 87.
    Wagner D, Spahn-Langguth H, Hanafy A, Koggel A, Langguth P. Intestinal drug efflux: formulation and food effects. Adv Drug Deliv Rev. 2001;50 Suppl 1:S13–31.PubMedGoogle Scholar
  88. 88.
    Touitou E, Barry BW, editors. Enhancement in drug delivery. Florida: CRC Press; 2006.Google Scholar
  89. 89.
    Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125(1):91–7.Google Scholar
  90. 90.
    Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res. 1992;9(1):87–93.PubMedGoogle Scholar
  91. 91.
    Li C, Fleisher D, Li L, Schwier JR, Sweetana SA, Vasudevan V, et al. Regional-dependent intestinal absorption and meal composition effects on systemic availability of LY303366, a lipopeptide antifungal agent, in dogs. J Pharm Sci. 2001;90(1):47–57.PubMedGoogle Scholar
  92. 92.
    Martinez M, Amidon G, Clarke L, Jones WW, Mitra A, Riviere J. Applying the biopharmaceutics classification system to veterinary pharmaceutical products. Part II. Physiological considerations. Adv Drug Deliv Rev. 2002;54(6):825–50.PubMedGoogle Scholar
  93. 93.
    Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60(6):702–16.PubMedGoogle Scholar
  94. 94.
    Khoo SM, Shackleford DM, Porter CJH, Edwards GA, Charman WN. Intestinal lymphatic transport of halofantrine occurs after oral administration of a unit–dose lipid-based formulation to fasted dogs. Pharm Res. 2003;20(9):1460–5.PubMedGoogle Scholar
  95. 95.
    Wang D, Wang X, Li X, Ye L. Preparation and characterization of solid lipid nanoparticles loaded with α-asarone. PDA J Pharm Sci Technol. 2008;62(1):56–65.PubMedGoogle Scholar
  96. 96.
    Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16(5):751–7.PubMedGoogle Scholar
  97. 97.
    Bekerman T, Golenser J, Domb A. Cyclosporin nanoparticulate lipospheres for oral administration. J Pharm Sci. 2004;93(5):1264–70.PubMedGoogle Scholar
  98. 98.
    Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic Grozdanis M, Lenhardt T, et al. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev. 2007;59(6):419–26.PubMedGoogle Scholar
  99. 99.
    Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm. 2006;327(1–2):153–9.PubMedGoogle Scholar
  100. 100.
    Zhang Z, Lv H, Zhou J. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Pharmazie. 2009;64(9):574–8.PubMedGoogle Scholar
  101. 101.
    Zhang N, Ring Q, Huang G, Han X, Cheng Y, Xu W. Transport characteristics of wheat germ agglutinin-modified insulin-liposomes and solid lipid nanoparticles in a perfused rat intestinal model. J Nanosci Nanotechnol. 2006;6(9–10):2959–66.PubMedGoogle Scholar
  102. 102.
    Priano L, Esposti D, Esposti R, Castagna G, De Medici C, Fraschini F, et al. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J Nanosci Nanotechnol. 2007;7(10):3596–601.PubMedGoogle Scholar
  103. 103.
    Liu C, Liu D, Bai F, Zhang J, Zhang N. In vitro and in vivo studies of lipid-based nanocarriers for oral N3-o-toluyl-fluorouracil delivery. Drug Deliv. 2010;17(5):352–63.PubMedGoogle Scholar
  104. 104.
    Yuan H, Chen J, Du YZ, Hu FQ, Zeng S, Zhao HL. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf B. 2007;58(2):157–64.Google Scholar
  105. 105.
    Yang L, Geng Y, Li H, Zhang Y, You J, Chang Y. Enhancement the oral bioavailability of praziquantel by incorporation into solid lipid nanoparticles. Pharmazie. 2009;64(2):86–9.PubMedGoogle Scholar
  106. 106.
    Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009;133(3):238–44.PubMedGoogle Scholar
  107. 107.
    Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis. 2005;85(5–6):415–20.PubMedGoogle Scholar
  108. 108.
    Langguth P, Hanafy A, Frenzel D, Grenier P, Nhamias A, Ohlig T, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm. 2005;31(3):319–29.PubMedGoogle Scholar
  109. 109.
    Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ, et al. Preparation and characterization of vinpocetine-loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–85.PubMedGoogle Scholar
  110. 110.
    Westesen K. Novel lipid-based colloidal dispersions as potential drug administration systems—expectations and reality. Colloid Polym Sci. 2000;278(7):608–18.Google Scholar
  111. 111.
    Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN(TM)) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47(2):125–32.PubMedGoogle Scholar
  112. 112.
    Freitas C, Mullera RH. Spray-drying of solid lipid nanoparticles (SLN TM). Eur J Pharm Biopharm. 1998;46(2):145–51.PubMedGoogle Scholar
  113. 113.
    Kramer T, Kremer DM, Pikal MJ, Petre WJ, Shalaev EY, Gatlin LA. A procedure to optimize scale-up for the primary drying phase of lyophilization. J Pharm Sci. 2009;98(1):307–18.PubMedGoogle Scholar
  114. 114.
    Schwarz C, Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int J Pharm. 1997;157(2):171–9.PubMedGoogle Scholar
  115. 115.
    Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J Microencapsul. 1998;15(2):173–84.PubMedGoogle Scholar
  116. 116.
    Zimmermann E, Muller RH, Mader K. Influence of different parameters on reconstitution of lyophilized SLN. Int J Pharm. 2000;196(2):211–3.PubMedGoogle Scholar
  117. 117.
    Lim SJ, Kim CK. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm. 2002;243(1–2):135–46.PubMedGoogle Scholar
  118. 118.
    del Pozo-Rodríguez A, Solinís MA, Gascón AR, Pedraz JL. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm. 2009;71(2):181–9.PubMedGoogle Scholar
  119. 119.
    Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  1. 1.Institute of Chemical and Engineering Sciences, Agency for Science, Technology and ResearchSingaporeRepublic of Singapore
  2. 2.Department of PharmacyNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations