AAPS PharmSciTech

, Volume 11, Issue 3, pp 1383–1390 | Cite as

Development and Evaluation of Emulsions from Carapa guianensis (Andiroba) Oil

  • Magda R. A. Ferreira
  • Rosilene R. Santiago
  • Tatiane P. de Souza
  • Eryvaldo S. T. Egito
  • Elquio E. Oliveira
  • Luiz A. L. Soares
Research Article


Carapa guianensis, a popular medicinal plant known as “Andiroba” in Brazil, has been used in traditional medicine as an insect repellent and anti-inflammatory product. Additionally, this seed oil has been reported in the literature as a repellent against Aedes aegypti. The aim of this work is to report on the emulsification of vegetable oils such as “Andiroba” oil by using a blend of nonionic surfactants (Span 80® and Tween 20®), using the critical hydrophilic–lipophilic balance (HLB) and pseudo-ternary diagram as tools to evaluate the system’s stability. The emulsions were prepared by the inverse phase method. Several formulations were made according to a HLB spreadsheet design (from 4.3 to 16.7), and the products were stored at 25°C and 4°C. The emulsion stabilities were tested both long- and short-term, and the more stable one was used for the pseudo-ternary diagram study. The emulsions were successfully obtained by a couple of surfactants, and the HLB analysis showed that the required HLB of the oil was 16.7. To conclude, the pseudo-ternary diagram identified several characteristic regions such as emulsion, micro-emulsion, and separation of phases.


Carapa guianensis oil emulsions hydrophilic–lipophilic balance (HLB) pseudo-ternary diagram stability 



The authors are grateful for the financial support received from CNPq (477131/2007-7), FAPERN/MCT/CT-INFRA/CNPq (PPP 2007), and UFRN (Propesq/Pibic). The authors also thank Glenn Hawes, from the University of Georgia—American Language Program, for his editing this manuscript.


  1. 1.
    Corrêa MP. Dicionário das plantas úteis do Brasil e das exóticas cultivadas por Manuel Pio Corrêa. Rio de Janeiro: Imprensa Nacional; 1984.Google Scholar
  2. 2.
    Vieira LS. Fitoterapia da Amazônia: manual de plantas medicinais. São Paulo: Ceres; 1992.Google Scholar
  3. 3.
    Sampaio PTB. Andiroba (Carapa guianensis). In: Clay JW, Sampaio PTB, Clement CR, editors. Biodiversidade Amazônica: exemplos e estratégias de utilização. Manaus: Amazonas; 2000. p. 243–51.Google Scholar
  4. 4.
    Hammer ML, Johns EA. Tapping an Amazônian plethora: four medicinal plants of Marajó Island, Pará (Brazil). J Ethnopharmacol. 1993;40(1):53–75. doi: 10.1016/0378-8741(93)90089-N.CrossRefPubMedGoogle Scholar
  5. 5.
    Ferraz IDK, Camargo JLC, Sampaio PTB. Sementes e plântulas de Andiroba (Carapa guianensis Aublet e Carapa procera D. C.): aspectos botânicos, ecológicos e tecnológicos. Acta Amazônica. 2002;32(4):647–61.Google Scholar
  6. 6.
    Ferrari M, Oliveira MSC, Nakano AK, Rocha-Filho PA. In vitro and in vivo determinations of sun protection factor (SPF) of emulsions with andiroba oil (Carapa guianensis). Rev Bras Farmacogn. 2007;17(4):626–30. doi: 10.1590/S0102-695X2007000400023.CrossRefGoogle Scholar
  7. 7.
    Miot HA, Batistella RF, Batista KA, Volpato DEC, Augusto LST, Madeira NG, et al. Comparative study of the topical effectiveness of the Andiroba oil (Carapa guianensis) and DEET 50% as repellent for Aedes sp. Rev Inst Med Trop São Paulo. 2004;46(5):253–6. doi: 10.1590/S0036-46652004000500004.PubMedGoogle Scholar
  8. 8.
    Silva OS, Romão PR, Blazius RD, Prohiro JS. The use of andiroba Carapa guianensis as larvicide against Aedes albopictus. J Am Mosq Control Assoc. 2004;20(4):456–7.PubMedGoogle Scholar
  9. 9.
    Mendonça FAC, Silva KFS, Santos KK, Ribeiro Junior KAL, Sant’Ana AEG. Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Fitoterapia. 2005;76(7–8):629–36. doi: 10.1016/j.fitote.2005.06.013.CrossRefPubMedGoogle Scholar
  10. 10.
    Silva OS, Prophiro JS, Nogared JC, Kanis L, Emerick S, Blazius RD, et al. Larvicidal effect of andiroba oil, Carapa guianensis (Meliaceae), against Aedes aegypti. J Am Mosq Control Assoc. 2006;22(4):699–701.CrossRefPubMedGoogle Scholar
  11. 11.
    Penido C, Conte FP, Chagas MSS, Rodrigues CAB, Pereira JFG, Henriques MGMO. Antiinflammatory effects of natural tetranortriterpenoids isolated from Carapa guianensis Aublet on zymosan-induced arthritis in mice. Inflamm Res. 2006;55(11):457–64. doi: 10.1007/s00011-006-5161-8.CrossRefPubMedGoogle Scholar
  12. 12.
    Costa-Silva JH, Lyra MMA, Lima CR, Arruda VM, Araújo AV, Ribeiro e Ribeiro A, et al. Estudo toxicológico reprodutivo da Carapa guianensis Aublet (Andiroba) em ratas Wistar. Acta Farm Bonaerense. 2006;25(3):425–8.Google Scholar
  13. 13.
    Costa-Silva JH, Lyra MMA, Lima CR, Arruda VM, Araújo AV, Ribeiroeribeiro A, et al. A toxicological evaluation of the effect of Carapa guianensis Aublet on pregnancy in Wistar rats. J Ethnopharmacol. 2007;112(1):122–6. doi: 10.1016/j.jep.2007.02.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Costa-Silva JH, Lima CR, Silva EJ, Araújo AV, Fraga MC, Costa-Silva JH, et al. Acute and subacute toxicity of the Carapa guianensis Aublet (Meliaceae) seed oil. J Ethnopharmacol. 2008;116(3):495–500. doi: 10.1016/j.jep.2007.12.016.CrossRefPubMedGoogle Scholar
  15. 15.
    Masson DS, Morais GG, Morais JM, Andrade FF, Santos ODH, Oliveira WP, et al. Polyhydroxy alcohols and peach oil addition influence on liquid crystal formation and rheological behavior of o/w emulsions. J Dispers Sci Technol. 2005;26(4):463–8. doi: 10.1081/DIS-200054579.CrossRefGoogle Scholar
  16. 16.
    Andrade FF, Santos OD, Oliveira WP, Rocha-Filho PA. Influence of PEG-12 Dimethicone addition on stability and formation of emulsions containing liquid crystal. Int J Cosmet Sci. 2007;29(3):211–8. doi: 10.1111/j.1467-2494.2007.00374.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Rahate AR, Nagarkar JM. Emulsification of vegetable oils using a blend of nonionic surfactants for cosmetic applications. J Dispers Sci Technol. 2007;28(7):1077–80. doi: 10.1080/01932690701524802.CrossRefGoogle Scholar
  18. 18.
    Lima CG, Vilela AFG, Silva AAS, Piannovski AP, Silva KK, Carvalho VFM, et al. Desenvolvimento e avaliação da estabilidade física de emulsões O/A contendo óleo de babaçu (Orbignya oleifera). Rev Bras Farm. 2008;89(3):239–45.Google Scholar
  19. 19.
    Westesen K. Emulsions. In: Herzfeldt CD, Kreuter J, editors. Grundlagen der Arzneiformenlehre 2: Galenik. 1 Auf. Berlin: Springer; 1999.Google Scholar
  20. 20.
    Griffin WC. Classification of surface-active agents by “HLB”. J SCC. 1949;1:311–26.Google Scholar
  21. 21.
    Orafidiya LO, Oladimeji FA. Determination of the required HLB values of some essential oils. Int J Pharm. 2002;237(1/2):241–9. doi: 10.1016/S0378-5173(02)00051-0.CrossRefPubMedGoogle Scholar
  22. 22.
    Macedo JPF, Fernandes LL, Formiga FR, Reis MF, Nagashima Jr T, Soares LAL, et al. Micro-emultocrit technique: a valuable tool for determination of critical HLB value of emulsions. AAPS PharmasciTech. 2006;7(1):E146–52. doi: 10.1208/pt070121.CrossRefGoogle Scholar
  23. 23.
    Onunkwo GC, Adikwu MU. Stability of veegum/mucuna gum emulsions. STP Pharma Sciences. 1997;74:320–5.Google Scholar
  24. 24.
    Tadros T. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Colloid Interface Sci. 2004;108/109:227–58. doi: 10.1016/j.cis.2003.10.025.CrossRefGoogle Scholar
  25. 25.
    Formiga FR, Fonseca IAA, Souza KB, Silva AKA, Macedo JPF, Araújo IB, et al. Influence of a lipophilic drug on the stability of emulsions: an important approach on the development of lipidic carriers. Int J Pharm. 2007;344(1/2):158–60. doi: 10.1016/j.ijpharm.2007.05.052.CrossRefPubMedGoogle Scholar
  26. 26.
    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliver Rev. 2000;45(1):89–121. doi: 10.1016/S0169-409X(00)00103-4.CrossRefGoogle Scholar
  27. 27.
    Aboofazeli R, Patel N, Thomas M, Lawrence MJ. Investigations into the formation and characterization of phospholipid microemulsions. IV. Pseudo-ternary phase-diagrams of systems containing water–lecithin–alcohol and oil—the influence of oil. Int J Pharm. 1995;125(1):107–16. doi: 10.1016/0378-5173(95)00125-3.CrossRefGoogle Scholar
  28. 28.
    Loffredo L. Desenvolvimento de Microemulsões contendo fotoprotetores inorgânicos nanoparticulados [Mestrado]. Natal: Universidade Federal do Rio Grande do Norte; 2008.Google Scholar
  29. 29.
    Bisal S, Bhattacharya PK, Moulik SP. Conductivity study of microemulsions. Evaluation of hydration of oil/water microemulsions applying Bruggeman equation. J Phys Chem. 1990;94(10):4212–6. doi: 10.1021/j100373a062.CrossRefGoogle Scholar
  30. 30.
    Song M-G, Cho S-H, Kim J-Y, Kim J-D. Rapid evaluation of water-in-oil (W/O) emulsion stability by turbidity ratio measurements. Korean J Coll and Inter Sci. 2000;230:213–5.CrossRefGoogle Scholar
  31. 31.
    Song M-G, Cho S-H, Kim J-Y, Kim J-D. Novel evaluation method for the water-in-oil (W/O) emulsion stability by turbidity ratio measurements. Korean J Chem Eng. 2002;19(3):425–30.CrossRefGoogle Scholar
  32. 32.
    Salager JL, Forgiarini A, Márquez L, Peña A, Pizzino A, Rodriguez MP, et al. Using emulsion inversion in industrial processes. Adv Colloid Interface Sci. 2004;108/109:259–72.CrossRefGoogle Scholar
  33. 33.
    Kantarcı G, Özgüney I, Karasulu HY, Arzık S, Güneri T. Comparison of different water/oil microemulsions containing diclofenac sodium: preparation, characterization, release rate, and skin irritation studies. AAPS PharmSciTech. 2007;8(4):75–81. doi: 10.1208/pt0804091.CrossRefGoogle Scholar
  34. 34.
    Kunieda H, Hasegawa Y, John AC, Naito M, Muto M. Phase behaviour of polyoxyethylene hydrogenated castor oil in oil/water system. Colloids Surf A. 1996;109:209–16. doi: 10.1016/S0927-7757(95)03456-0.CrossRefGoogle Scholar
  35. 35.
    Testard F, Zemb T. Interpretation of phase diagrams: topological and thermodynamical constraints. Colloids Surf A. 2002;205(1/2):3–13. doi: 10.1016/S0927-7757(01)01141-4.CrossRefGoogle Scholar
  36. 36.
    Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. AAPS PharmSciTech. 2006;7(2):E99–104. doi: 10.1208/pt070245.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Magda R. A. Ferreira
    • 1
  • Rosilene R. Santiago
    • 1
  • Tatiane P. de Souza
    • 2
    • 4
  • Eryvaldo S. T. Egito
    • 1
    • 4
  • Elquio E. Oliveira
    • 3
  • Luiz A. L. Soares
    • 4
    • 5
  1. 1.Departamento de Farmácia—Centro de Ciências da SaúdeUniversidade Federal do Rio Grande do Norte—UFRNNatalBrazil
  2. 2.Departamento de Medicamentos e AlimentosUniversidade Federal do Amazonas—UFAMManausBrazil
  3. 3.Centro de Ciências Biológicas e Sociais AplicadasUniversidade Estadual da Paraíba—UEPBJoão PessoaBrazil
  4. 4.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal do Rio Grande do Norte—UFRNNatalBrazil
  5. 5.Departamento de Ciências FarmacêuticasUniversidade Federal de Pernambuco—UFPERecifeBrazil

Personalised recommendations