AAPS PharmSciTech

, Volume 11, Issue 3, pp 1250–1256 | Cite as

Formulation and In vitro Characterization of Eudragit® L100 and Eudragit® L100-PLGA Nanoparticles Containing Diclofenac Sodium

  • Meltem CetinEmail author
  • Alptug Atila
  • Yucel Kadioglu
Research Article


The aim of this study was to formulate and characterize Eudragit® L100 and Eudragit® L100-poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing diclofenac sodium. Diclofenac generates severe adverse effects with risks of toxicity. Thus, nanoparticles were prepared to reduce these drawbacks in the present study. These nanoparticles were evaluated for surface morphology, particle size and size distribution, percentage drug entrapment, and in vitro drug release in pH 6.8. The prepared nanoparticles were almost spherical in shape, as determined by atomic force microscopy. The nanoparticles with varied size (241–274 nm) and 25.8–62% of entrapment efficiency were obtained. The nanoparticles formulations produced the release profiles with an initial burst effect in which diclofenac sodium release ranged between 38% and 47% within 4 h. The extent of drug release from Eudragit® L100 nanoparticles was up to 92% at 12 h. However, Eudragit®/PLGA nanoparticles showed an initial burst release followed by a slower sustained release. The cumulative release at 72 h was 56%, 69%, and 81% for Eudragit®/PLGA (20:80), Eudragit®/PLGA (30:70) and Eudragit®/PLGA (50:50) nanoparticles, respectively. The release profiles and encapsulation efficiencies depended on the amount of Eudragit in the blend. These data demonstrated the efficacy of these nanoparticles in sustaining the diclofenac sodium release profile.


diclofenac sodium Eudragit® L100 nanoparticles PLGA polymer blend 


  1. 1.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Contr Release. 2001;70(1–2):1–20.CrossRefGoogle Scholar
  2. 2.
    Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M. Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 2010 (in press).Google Scholar
  3. 3.
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst. 2005;22(5):419–64.PubMedGoogle Scholar
  6. 6.
    Yamanaka YJ, Leong KW. Engineering strategies to enhance nanoparticle-mediated oral delivery. J Biomater Sci Polym Ed. 2008;19(12):1549–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Warner TD, Vojnovic I, Bishop-Bailey D, Mitchell JA. Influence of plasma protein on the potencies of inhibitors of cyclooxygenase-1 and -2. FASEB J. 2006;20(3):542–4.PubMedGoogle Scholar
  8. 8.
    Mitchell JA, Warner TD. Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy. Br J Pharmacol. 1999;128(6):1121–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Sena MM, Chaudhry ZF, Collins CH, Poppi RJ. Direct determination of diclofenac in pharmaceutical formulations containing B vitamins by using UV spectrophotometry and partial least squares regression. J Pharm Biomed Anal. 2004;36(4):743–9.CrossRefPubMedGoogle Scholar
  10. 10.
    González M, Rieumont J, Dupeyron D, Perdomo I, Fernandez E, Abdón L, et al. Nanoencapsulation of acetyl salicylic acid within enteric polymer nanopaticles. Rev Adv Mater Sci. 2008;17:71–5.Google Scholar
  11. 11.
    Piao ZZ, Lee MK, Lee BJ. Colonic release and reduced intestinal tissue damage of coated tablets containing naproxen inclusion complex. Int J Pharm. 2008;350(1–2):205–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Moustafine RI, Margulis EB, Sibgatullina LF, Kemenova VA, Van den Mooter G. Comparative evaluation of interpolyelectrolyte complexes of chitosan with Eudragit L100 and Eudragit L100-55 as potential carriers for oral controlled drug delivery. Eur J Pharm Biopharm. 2008;70(1):215–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Saffari M, Shahbazi M, Ardestani MS. Formulation and in vitro evaluation of Eudragit L100® microspheres of piroxicam. Nat Precedings. 2008;1544(1):1–5.Google Scholar
  14. 14.
    Andrews GP, Jones DS, Diak OA, McCoy CP, Watts AB, McGinity JW. The manufacture and characterisation of hot-melt extruded enteric tablets. Eur J Pharm Biopharm. 2008;69(1):264–73.CrossRefPubMedGoogle Scholar
  15. 15.
    Devarajan PV, Sonavane GS. Design and evaluation of pH modulated controlled release matrix systems for colon specific delivery of indomethacin. Pharmazie. 2007;63(10):736–42.Google Scholar
  16. 16.
    Devarajan PV, Sonavane GS. Preparation and in vitro/in vivo evaluation of gliclazide loaded Eudragit nanoparticles as sustained release carriers. Drug Dev Ind Pharm. 2007;33(2):101–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. 5th ed. London: Pharmaceutical Press and American Pharmacists Association; 2006.Google Scholar
  18. 18.
    Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci. 2008;97(1):71–87.CrossRefPubMedGoogle Scholar
  19. 19.
    Dillen K, Bridts C, Van der Veken P, Cos P, Vandervoort J, Augustyns K, et al. Adhesion of PLGA or Eudragit/PLGA nanoparticles to staphylococcus and pseudomonas. Int J Pharm. 2008;349(1–2):234–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Jawahar N, Eagappanath T, Nagasamy V, Jubie S, Samanta MK. Preparation and characterisation of PLGA-nanoparticles containing an Anti-hypertensive agent. Int J Pharm Tech Res. 2009;1(2):390–3.Google Scholar
  21. 21.
    Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, et al. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm. 2008;69(2):445–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Cetin M, Aktas Y, Vural I, Capan Y, Dogan LA, Duman M, et al. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Deliv. 2007;14(8):525–9.CrossRefPubMedGoogle Scholar
  23. 23.
    International Conference on Harmonization (ICH), Q2b: Validation of analytical procedures: methodology. US FDA Federal Register; 1997 (Vol. 62): p. 27463Google Scholar
  24. 24.
    Hombreiro Pérez M, Zinutti C, Lamprecht A, Ubrich N, Astier A, Hoffman M, et al. The preparation and evaluation of poly(epsilon-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J Contr Release. 2000;65(3):429–38.CrossRefGoogle Scholar
  25. 25.
    Cetin M, Capan Y, Vural I, Dogan AL, Guc D, Hincal AA, et al. Preparation and characterization of bFGF and BSA loaded microspheres. J Drug Deliv Sci Tech. 2005;15(5):371–5.Google Scholar
  26. 26.
    Mundargi RC, Srirangarajan S, Agnihotri SA, Patil SA, Ravindra S, Setty SB, et al. Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release. 2007;119(1):59–68.CrossRefPubMedGoogle Scholar
  27. 27.
    D'Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23(3):460–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Kouchak M, Atyabi F. Ion exchange, an approach to prepare an oral floating drug delivery system for diclofenac. Iran J Pharm Res. 2004;2:93–7.Google Scholar
  29. 29.
    Tunçay M, Caliş S, Kaş HS, Ercan MT, Peksoy I, Hincal AA. Diclofenac sodium incorporated PLGA (50:50) microspheres: formulation considerations and in vitro/in vivo evaluation. Int J Pharm. 2000;195(1–2):179–88.CrossRefPubMedGoogle Scholar
  30. 30.
    Kilic AC, Capan Y, Vural I, Gursoy RN, Dalkara T, Cuine A, et al. Preparation and characterization of PLGA nanospheres for the targeted delivery of NR2B-specific antisense oligonucleotides to the NMDA receptors in the brain. J Microencapsul. 2005;22(6):633–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Saxena V, Sadoqi M, Shao J. Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release. Int J Pharm. 2004;278(2):293–301.CrossRefPubMedGoogle Scholar
  32. 32.
    Sahoo SK, Labhasetwar V. Nanoparticles interface: an important determinant in nanoparticle-mediated drug/gene delivery. In: Gupta RB, Kompella UB, editors. Nanoparticle technology for drug delivery. New York: Taylor & Francis Group; 2006. p. 139–54.Google Scholar
  33. 33.
    Bala I, Bhardwaj V, Hariharan S, Kharade SV, Roy N, Ravi Kumar MN. Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. J Drug Target. 2006;14(1):27–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allémann E. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm. 2003;55(1):115–24.CrossRefPubMedGoogle Scholar
  35. 35.
    Fattal E, Quaglia F, Gupta P, Brazeau G. Biodegradable microparticles for the development of less-painful and less-irritating parenterals. In: Gupta P, Brazeau G, editors. Injectable Drug Development: Techniques to Reduce Pain and Irritation. Informa Health Care; 1999. p. 355–78.Google Scholar
  36. 36.
    Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.CrossRefPubMedGoogle Scholar
  37. 37.
    Choi HS, Seo SA, Khang G, Rhee JM, Lee HB. Preparation and characterization of fentanyl-loaded PLGA microspheres: in vitro release profiles. Int J Pharm. 2002;234(1–2):195–203.CrossRefPubMedGoogle Scholar
  38. 38.
    Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Lin SY, Chen KS, Teng HH, Li MJ. In vitro degradation and dissolution behaviours of microspheres prepared by three low molecular weight polyesters. J Microencapsul. 2000;17(5):577–86.CrossRefPubMedGoogle Scholar
  40. 40.
    Dai J, Nagai T, Wang X, Zhang T, Meng M, Zhang Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int J Pharm. 2004;280(1–2):229–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Al-Taani BM, Tashtoush BM. Effect of microenvironment pH of swellable and erodable buffered matrices on the release characteristics of diclofenac sodium. AAPS J Pharm Sci Tech. 2003;4(3):E43.Google Scholar
  42. 42.
    Basavaraj BV, Deveswaran R, Bharath S, Abraham S, Furtado S, Madhavan V. Hollow microspheres of diclofenac sodium—a gastroretentive controlled delivery system. Pak J Pharm Sci. 2008;21(4):451–4.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyAtatürk UniversityErzurumTurkey
  2. 2.Department of Analytical Chemistry, Faculty of PharmacyAtatürk UniversityErzurumTurkey

Personalised recommendations