AAPS PharmSciTech

, Volume 9, Issue 3, pp 782–790 | Cite as

In Vitro Evaluation of Proniosomes as a Drug Carrier for Flurbiprofen

  • Mahmoud Mokhtar Ahmed IbrahimEmail author
  • Omaima A. Sammour
  • Mohamed A. Hammad
  • Nagia A. Megrab
Research Article


The purpose of the present investigation is to formulate and evaluate proniosomal transdermal carrier systems for flurbiprofen. Proniosomes were prepared using various non-ionic surfactants, namely span 20 (Sp 20), span 40 (Sp 40), span 60 (Sp 60) and span 80 (Sp 80) without and with cholesterol at percentages ranging from 0% to 50%. The effect of surfactant type and cholesterol content on drug release was investigated. Drug release was tested by diffusion through cellophane membrane and rabbit skin. Drug release from the prepared systems was compared to that from flurbiprofen suspensions in distilled water and HPMC (hydroxypropylmethylcellulose) gels. In case of Sp 20 and Sp 80, the added amount of cholesterol affected the preparation type to be either proniosomal alcoholic solutions or liquid crystalline gel systems. On the other hand, both Sp 40 and Sp 60 produced gel systems in presence or absence of cholesterol. Microscopic observations showed that either proniosomal solutions or gel formulations immediately converted to niosomal dispersions upon hydration. Due to the skin permeation barrier, rabbit skin showed lower drug diffusion rates compared to cellophane membrane. The proniosomal composition controlled drug diffusion rates to be either faster or slower than the prepared flurbiprofen suspensions in HPMC gels or distilled water, respectively. In conclusion, this study demonstrated the possibility of using proniosomal formulations for transdermal drug delivery.

Key words

cholesterol flurbiprofen gel liquid crystal non-ionic surfactant proniosomes 


  1. 1.
    D. N. Reddy, and N. Udupa. Formulation and evaluation of oral and transdermal preparations of flurbiprofen and piroxicam incorporated with different carriers. Drug Dev. Ind. Pharm. 19:843–852 (1993).CrossRefGoogle Scholar
  2. 2.
    H. Schreier, and J. Bouwstra. Liposomes and niosomes as topical drug carriers dermal and transdermal drug delivery. J. Control. Rel. 30:1–15 (1994).CrossRefGoogle Scholar
  3. 3.
    D. Vanhal, A. Vanrensen, T. Devringer, H. Junginger, and J. Bouwstra. Diffusion of estradiol from non ionic surfactant vesicles through human stratum corneum in vitro. STP Pharm. Sci. 6:72–78 (1996).Google Scholar
  4. 4.
    I. F. Uchegbu, and S. P. Vyas. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 172:33–70 (1998).CrossRefGoogle Scholar
  5. 5.
    J. Varshosaz, A. Pardakhty, and M. H. B. Seied. Sorbitan monopalmitate-based proniosomes for transdermal delivery of chlorpheniramine maleate. Drug Deliv. 12:75–82 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    H. E. J. Hofland, J. A. Bouwstra, M. Ponec, H. E. Bodde, F. Spies, J. Coos Verhoef, and H. E. Junginger. Interactions of non ionic surfactant vesicles with cultured keratinocytes and human skin in vitro: A survey of toxicological aspects and ultrastructural changes in stratum corneum. J. Control. Rel. 16:155–168 (1991).CrossRefGoogle Scholar
  7. 7.
    D. Aggarwal, D. Pal, A. K. Mitra, and I. P. Kaur. Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int. J. Pharm. 338:21–26 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Vora, A. J. Khopade, and N. K. Jain. Proniosome based transdermal delivery of levonorgestrel for effective contraception. J. Control. Rel. 54:149–165 (1998).CrossRefGoogle Scholar
  9. 9.
    B. D. Anderson, and R. A. Conradi. Predictive relationships in the water solubility of salts of a non steroidal anti-inflammatory drug. J. Pharm. Sci. 74:815–820 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Kitagawa, T. Sakai, H. Saito, M. Mori, R. Tazoe, T. Sugibayashi, and A. Nomura. Anti-inflammatory and analgesic actions and skin irritation of flurbiprofen by dermal application. Lyakuhin Kenkyu. 13:869–878 (1993).Google Scholar
  11. 11.
    K. Kyuki, K. Tsurumi, H. Fujimura, S. Masumoto, and Y. Hashimoto. Anti-inflammatory effect of flurbiprofen for dermal application (FP-A). Iyakuhin Kenkyu. 15:293–298 (1984).Google Scholar
  12. 12.
    S. Masumoto, T. Akiba, M. Okumura, K. Ichikawa, and Y. Hashimoto. Anti-inflammatory effect of flurbiprofen by topical application. Iyakuhin Kenkyu. 13:878–885 (1982).Google Scholar
  13. 13.
    A. H. Kibbe (ed), Handbook of Pharmaceutical Excepients, 3rd edn. American Pharmaceutical Association, Washington, D.C, 2000, pp. 511–514.Google Scholar
  14. 14.
    P. Sebastiani, S. Nicoli, and P. Santi. Effect of lactic acid and iontophoresis on drug permeation across rabbit ear skin. Int. J. Pharm. 292:119–126 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Larrucea, A. Arellano, S. Santoyo, and P. Ygartua. Interaction of tenoxicam with cyclodextrins and its influence on the in vitro percutaneous penetration of the drug. Drug Dev. Ind. Pharm. 27(3):251–260 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Mura, M.T. Faucci, G. Bramanti, and P. Corti. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur. J. Pharm. Sci. 9:365–372 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Attwood and A. T. Florence. Surfactant systems, their chemistry, pharmacy and biology, Chapman and Hall, London, 1983.Google Scholar
  18. 18.
    M. Sudaxshiina, B. Benedicte Van Den, G. Gregory, and T. F. Alexander. Water in sorbitan monostearate organogels (water in oil gels). J. Pharm. Sci. 88(6):615–619 (1999a).Google Scholar
  19. 19.
    M. Sudaxshiina, G. Gregory, and T. F. Alexander. Interaction of nonionic surfactant based organogel with aqueous media. Int. J. Pharm. 180:211–214 (1999b).CrossRefGoogle Scholar
  20. 20.
    A. Martin, J. Swarbrick, and A. Cammarata. Physical Pharmacy, 3rd ed., Lea and Febiger, Philadelphia, 1993, pp. 496–501.Google Scholar
  21. 21.
    B. Godin, and E. Touitou. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliver. Rev. 59:1152–1161 (2007).CrossRefGoogle Scholar
  22. 22.
    T. Yoshioka, B. Sternberg, and A. T. Florence. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and sorbitan triester (Span 85). Int. J. Pharm. 105:1–6 (1994).CrossRefGoogle Scholar
  23. 23.
    J. Y. Fang, S. Y. Yu, P. C. Wu, Y. B. Huang, and Y. H. Tsai. In vitro skin permeation of estradiol from various proniosome formulations. Int. J. Pharm. 215:91–99 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Valenta, M. Wanka, and J. Heidlas. Evaluation of novel soyalecithin formulations for dermal use containing ketoprofen as a model drug. J. Control. Rel. 63:165–173 (2000).CrossRefGoogle Scholar
  25. 25.
    P. N. Gupta, V. Mishra, A. Rawat, P. Dubey, S. Mahor, S. Jain, D. P. Chatterji, and S. P. Vyas. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: A comparative study. Int. J. Pharm. 293(1–2):73–82 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    B. D. Ladbrooke, R. M. Williams, and D. Chapman. Studies on lecithin–cholesterol–water interactions by differential scanning calorimetry and x-ray diffraction. Biochim. Biophys. Acta. 150:333–340 (1968).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Papahadjopoulos, K. Jacobson, S. Nir, and T. Isac. Phase transition in phospholipid vesicles: fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim. Biophys. Acta. 311:330–334 (1973).PubMedCrossRefGoogle Scholar
  28. 28.
    I. A. Alsarra, A. A. Bosela, S. M. Ahmed, and G. M. Mahrous. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur. J. Pharm. and Biopharm. Xx:1–6 (2004).Google Scholar
  29. 29.
    H. G. Ibrahim. Release studies from lyotropic liquid crystal systems. J. Pharm. Sci. 78(8):683–687 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Ramírez-Campos, and L. Villafuerte-Robles. Effect of formulation variables on verapamil hydrochloride release from hydrated HPMC matrices. Rev. Soc. Quím. Méx. 48:326–331 (2004).Google Scholar
  31. 31.
    D. K. Parikh, and T. K. Ghosh. Feasibility of transdermal delivery of fluoxetine. AAPS PharmSciTech. 6(2):144–149 (2005).CrossRefGoogle Scholar
  32. 32.
    N. A. Megrab, A. C. Williams, and B. W. Barry. Oestradiol permeation across human skin, silastic and snake skin membranes: The effects of ethanol/water co-solvent systems. Int. J. Pharm. 116:101–112 (1995).CrossRefGoogle Scholar
  33. 33.
    B. Y. Hwang, B. H. Jung, S. J. Chung, M. H. Lee, and C. K. Shim. In vitro skin permeation of nicotine from proliposomes. J. Control. Rel. 49:177–184 (1997).CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  • Mahmoud Mokhtar Ahmed Ibrahim
    • 1
    Email author
  • Omaima A. Sammour
    • 2
  • Mohamed A. Hammad
    • 1
  • Nagia A. Megrab
    • 1
  1. 1.Department of Pharmaceutics, Faculty of PharmacyZagazig UniversityZagazigEgypt
  2. 2.Department of Drug Technology, Faculty of PharmacyAin Shams UniversityCairoEgypt

Personalised recommendations