Advertisement

AAPS PharmSciTech

, Volume 9, Issue 2, pp 620–627 | Cite as

Rapid Development and Optimization of Tablet Manufacturing Using Statistical Tools

  • Eutimio Gustavo Fernández
  • Silvia Cordero
  • Malvina Benítez
  • Iraelio Perdomo
  • Yohandro Morón
  • Ada Esther Morales
  • Milagros Gaudencia Arce
  • Ernesto Cuesta
  • Juan Lugones
  • Maritza Fernández
  • Arturo Gil
  • Rodolfo Valdés
  • Mirna Fernández
Research Article

Abstract

The purpose of this paper was to develop a statistical methodology to optimize tablet manufacturing considering drug chemical and physical properties applying a crossed experimental design. The assessed model drug was dried ferrous sulphate and the variables were the hardness and the relative proportions of three excipients, binder, filler and disintegrant. Granule properties were modeled as a function of excipient proportions and tablet parameters were defined by the excipient proportion and hardness. The desirability function was applied to achieve optimal values for excipient proportions and hardness. In conclusion, crossed experimental design using hardness as the only process variable is an efficient strategy to quickly determine the optimal design process for tablet manufacturing. This method can be applied for any tablet manufacturing method.

KEY WORDS

crossed experimental design ferrous sulfate multivariate techniques statistical strategy tablet manufacturing 

Notes

Acknowledgments

Authors would like to thank the financial support granted by Quimefa Group and Merck for supplying dried ferrous sulphate. Authors kindly thank Mrs. Relma Tavares de Oliveira for the inspiration and Yohana and Brenda Morón for their kind contributions. Authors are also grateful to Mena Cayetana Ramos from “Salvador Allende” hospital for the carefully reviewing of the paper.

References

  1. 1.
    J. Gabrielsson, N. O. Lindberg, and T. Lundstedt. Multivariate methods in pharmaceutical applications. J. Chemom. 16:141–160 (2002).CrossRefGoogle Scholar
  2. 2.
    B. Campisi, D. Chicco, D. Vojnovic, and R. Phan-Tan-Luu. Experimental design for a pharmaceutical formulation: optimisation and robustness. J. Pharm. Biomed. Anal. 18:57–65 (1998).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Bodea, and S. E. Leucuta. Optimization of hydrophilic matrix tablets using a D-optimal design. Int. J. Pharm. 153:247–255 (1997).CrossRefGoogle Scholar
  4. 4.
    Y.-B. Huang, Y.-H. Tsai, W.-C. Yang, J.-S. Chang, P.-C. Wu, and K. Takayama. Once-daily propranolol extended-release tablet dosage form: formulation design and in vitro/in vivo investigation. Eur. J. Pharm. Biopharm. 58:607–614 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    Y.-B. Huang, Y.-H. Tsai, S.-H. Lee, J.-S. Chang, and P.-C. Wu. Optimization of pH-independent release of nicardipine hydrochloride extended-release matrix tablets using response surface methodology. Int. J. Pharm. 289:87–95 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    B. Perissutti, F. Rubessa, M. Moneghini, and D. Voinovich. Formulation design of carbamazepine fast-release tablets prepared by melt granulation technique. Int. J. Pharm. 256:53–63 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Martinello, T. M. Kaneko, M. V. Robles Velasco, M. E. Santos Taqueda, and V. O. Consiglieri. Optimization of poorly compactable drug tablets manufactured by direct compression using the mixture experimental design. Int. J. Pharm. 322:87–95 (2006).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Bergam, M. E. Johansson, T. Lundstedt, E. Seifert, and J. Åberg. Optimization of granulation and tabletting process by sequential design and multivariated analysis. Chemom. Intell. Lab. Syst. 44:271–286 (1998).CrossRefGoogle Scholar
  9. 9.
    C. A. A. Duineveld, A. K. Smilde, and D. A. Doornbos. Designs for mixture and process variables applied in tablet formulations. Anal. Chim. Acta. 2772:455–465 (1993).CrossRefGoogle Scholar
  10. 10.
    S. Wold, M. Sjöström, R. Carlson, T. Lundstedt, S. Hellberg, B. Skagerberg, C. Wikström, and J. Öhman. Multivariate design. Anal. Chim. Acta. 191:17–32 (1986).CrossRefGoogle Scholar
  11. 11.
    J. Gabrielsson, Å. Nyström, and T. Lundstedt. Multivariate methods in developing and evolutionary strategy for tablet formulation. Drug Dev. Ind. Pharm. 26:275–296 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Furlanetto, M. Cirri, F. Maestrelli, G. Corti, and P. Mura. Study of formulation variables influencing the drug release rate from matrix tablets by experimental design. Eur. J. Pharm. Biopharm. 62:77–84 (2006).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Emori, Y. Sakuraba, K. Takahashi, T. Nishihata, and T. Mayumi. Prospective validation of high-shear wet granulation process by wet granule sieving method. II. Utility of wet granule sieving method. Drug Dev. Ind. Pharm. 232:203–215 (1997).CrossRefGoogle Scholar
  14. 14.
    A. Iraizoz, O. Bilbao, and M. A. Barrios. Conferencias de Tecnología Farmacéutica II. Facultad de Farmacia y Alimentos. Departamento de Tecnología y Control de Medicamentos. Universidad de La Habana, ENPES, Ciudad Habana, 1990, pp. 170–181.Google Scholar
  15. 15.
    R. L. Carr. Evaluating flow properties of solids. Chem. Eng. 18:163–168 (1965).Google Scholar
  16. 16.
    A. Faure, P. York, and R. C. Rowe. Process control and scale-up of pharmaceutical wet granulation process: a review. Eur. J. Pharm. Biopharm. 52:269–277 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Eriksson, E. Johansson, and C. Wikströn. Mixture design-design generation, PLS analysis, and model usage. Chemom. Intell. Lab. Syst. 43:1–24 (1998).CrossRefGoogle Scholar
  18. 18.
    J. Swarbrick. Encyclopedia of Pharmaceutical Technology. Boylan, James. Marcel Dekker Inc., New York. Vol. XII. Tome 6. 1997; pp. 165.Google Scholar
  19. 19.
    A. Schϋssele, and A. Bauer-Brandl. Note on the measurement of flowability according to the European Pharmacopoeia. Int. J. Pharm. 257:301–304 (2003).CrossRefGoogle Scholar
  20. 20.
    O. Antikainen. New Methods to Evaluate Applicability of Powders and Granules for Tablet Compression, University of Helsinki, Faculty of Science, Finland, 2003, pp. 3–4, ISBN:ISBN 952-10-1061-4.Google Scholar
  21. 21.
    J. A. Cornell. Experiments with mixtures. Design, Models and the Analysis of Mixture Data. Chapter 7. The Inclusion of Process Variables in Mixtures Experiments. Wiley, Inc., United States of America, 1990, pp. 383–389.Google Scholar
  22. 22.
    USP Pharmacopeia XXVII, 2003. Pharmacopeia Convention. US Pharmacopeia XXVII, Rockville, MD, USA, pp. 792.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  • Eutimio Gustavo Fernández
    • 1
  • Silvia Cordero
    • 2
  • Malvina Benítez
    • 1
  • Iraelio Perdomo
    • 1
  • Yohandro Morón
    • 1
  • Ada Esther Morales
    • 1
  • Milagros Gaudencia Arce
    • 1
  • Ernesto Cuesta
    • 1
  • Juan Lugones
    • 2
  • Maritza Fernández
    • 2
  • Arturo Gil
    • 3
  • Rodolfo Valdés
    • 4
  • Mirna Fernández
    • 5
  1. 1.Inorganic Chemistry DepartmentCenter for Engineering and Chemical ResearchesHavanaCuba
  2. 2.“Reinaldo Gutiérrez” Pharmaceutical LaboratoriesHavanaCuba
  3. 3.Medsol LaboratoriesHavanaCuba
  4. 4.Monoclonal Antibody Production DepartmentCenter for Genetic Engineering and BiotechnologyHavanaCuba
  5. 5.Institute of Pharmacy and FoodUniversity of HavanaHavanaCuba

Personalised recommendations