The AAPS Journal

, 21:12 | Cite as

Evaluation of a Particulate Breast Cancer Vaccine Delivered via Skin

  • Lipika ChablaniEmail author
  • Suprita A. Tawde
  • Archana Akalkotkar
  • Martin J. D’Souza
Research Article


Breast cancer impacts female population globally and is the second most common cancer for females. With various limitations and adverse effects of current therapies, several immunotherapies are being explored. Development of an effective breast cancer vaccine can be a groundbreaking immunotherapeutic approach. Such approaches are being evaluated by several clinical trials currently. On similar lines, our research study aims to evaluate a particulate breast cancer vaccine delivered via skin. This particulate breast cancer vaccine was prepared by spray drying technique and utilized murine breast cancer whole cell lysate as a source of tumor-associated antigens. The average size of the particulate vaccine was 1.5 μm, which resembled the pathogenic species, thereby assisting in phagocytosis and antigen presentation leading to further activation of the immune response. The particulate vaccine was delivered via skin using commercially available metal microneedles. Methylene blue staining and confocal microscopy were used to visualize the microchannels. The results showed that microneedles created aqueous conduits of 50 ± 10 μm to deliver the microparticulate vaccine to the skin layers. Further, an in vivo comparison of immune response depicted significantly higher concentration of serum IgG, IgG2a, and B and T cell (CD4+ and CD8+) populations in the vaccinated animals than the control animals (p < 0.001). Upon challenge with live murine breast cancer cells, the vaccinated animals showed five times more tumor suppression than the control animals confirming the immune response activation and protection (p < 0.001). This research paves a way for individualized immunotherapy following surgical tumor removal to prolong relapse episodes.


microparticle spray drying whole cell lysate microneedle immunotherapy 



This work was supported by Georgia Cancer Coalition grant. We would like to thank Dr. Fred Miller for providing the 4T07 murine breast cancer cell line.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Mittendorf EA, Alatrash G, Xiao H, Clifton GT, Murray JL, Peoples GE. Breast cancer vaccines: ongoing National Cancer Institute-registered clinical trials. Expert Rev Vaccines. 2011;10(6):755–74.CrossRefGoogle Scholar
  2. 2.
    Mittendorf EA, Holmes JP, Ponniah S, Peoples GE. The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother. 2008;57(10):1511–21.CrossRefGoogle Scholar
  3. 3.
    Combadiere B, Mahe B. Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis. 2008;31(2–3):293–315.CrossRefGoogle Scholar
  4. 4.
    Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med. 2000;6(12):1403–6.CrossRefGoogle Scholar
  5. 5.
    Mattheolabakis G, Lagoumintzis G, Panagi Z, Papadimitriou E, Partidos CD, Avgoustakis K. Transcutaneous delivery of a nanoencapsulated antigen: induction of immune responses. Int J Pharm. 2010;385(1–2):187–93.CrossRefGoogle Scholar
  6. 6.
    Weldon WC, Martin MP, Zarnitsyn V, Wang B, Koutsonanos D, Skountzou I, et al. Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. Clin Vaccine Immunol. 2011;18(4):647–54.CrossRefGoogle Scholar
  7. 7.
    Yu RC, Abrams DC, Alaibac M, Chu AC. Morphological and quantitative analyses of normal epidermal Langerhans cells using confocal scanning laser microscopy. Br J Dermatol. 1994;131(6):843–8.CrossRefGoogle Scholar
  8. 8.
    Al-Zahrani S, Zaric M, McCrudden C, Scott C, Kissenpfennig A, Donnelly RF. Microneedle-mediated vaccine delivery: harnessing cutaneous immunobiology to improve efficacy. Expert Opin Drug Deliv. 2012;9(5):541–50.CrossRefGoogle Scholar
  9. 9.
    Hong X, Wei L, Wu F, Wu Z, Chen L, Liu Z, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945–52.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Naito S, Maeyama J, Mizukami T, Takahashi M, Hamaguchi I, Yamaguchi K. Transcutaneous immunization by merely prolonging the duration of antigen presence on the skin of mice induces a potent antigen-specific antibody response even in the absence of an adjuvant. Vaccine. 2007;25(52):8762–70.CrossRefGoogle Scholar
  11. 11.
    Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. Curr Top Microbiol Immunol. 2009;333:369–93.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Sugita K, Kabashima K, Atarashi K, Shimauchi T, Kobayashi M, Tokura Y. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin Exp Immunol. 2007;147(1):176–83.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gorse GJ, Falsey AR, Fling JA, Poling TL, Strout CB, Tsang PH. Intradermally-administered influenza virus vaccine is safe and immunogenic in healthy adults 18-64 years of age. Vaccine. 2013;31(19):2358–65.CrossRefGoogle Scholar
  14. 14.
    Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–68.CrossRefGoogle Scholar
  15. 15.
    Atmar RL, Patel SM, Keitel WA. Intanza((R)): a new intradermal vaccine for seasonal influenza. Expert Rev Vaccines. 2010;9(12):1399–409.CrossRefGoogle Scholar
  16. 16.
    Uppuluri C, Shaik AS, Han T, Nayak A, Nair KJ, Whiteside BR, et al. Effect of microneedle type on transdermal permeation of Rizatriptan. AAPS PharmSciTech. 2017;18(5):1495–506.CrossRefGoogle Scholar
  17. 17.
    Nayak A, Das DB, Chao TC, Starov VM. Spreading of a lidocaine formulation on microneedle-treated skin. J Pharm Sci. 2015;104(12):4109–16.CrossRefGoogle Scholar
  18. 18.
    Zhang D, Das DB, Rielly CD. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel. J Pharm Sci. 2014;103(2):613–27.CrossRefGoogle Scholar
  19. 19.
    Heppner GH, Miller FR, Shekhar PM. Nontransgenic models of breast cancer. Breast Cancer Res. 2000;2(5):331–4.CrossRefGoogle Scholar
  20. 20.
    Chablani L, Tawde SA, Akalkotkar A, D’Souza C, Selvaraj P, D’Souza MJ. Formulation and evaluation of a particulate oral breast cancer vaccine. J Pharm Sci. 2012;101(10):3661–71.CrossRefGoogle Scholar
  21. 21.
    Chiang CL, Benencia F, Coukos G. Whole tumor antigen vaccines. Semin Immunol. 2010;22(3):132–43.CrossRefGoogle Scholar
  22. 22.
    Chiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19(17):4801–15.CrossRefGoogle Scholar
  23. 23.
    Cho DY, Yang WK, Lee HC, Hsu DM, Lin HL, Lin SZ, et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg. 2012;77(5–6):736–44.CrossRefGoogle Scholar
  24. 24.
    Wolfraim LA, Takahara M, Viley AM, Shivakumar R, Nieda M, Maekawa R, et al. Clinical scale electroloading of mature dendritic cells with melanoma whole tumor cell lysate is superior to conventional lysate co-incubation in triggering robust in vitro expansion of functional antigen-specific CTL. Int Immunopharmacol. 2013;15(3):488–97.CrossRefGoogle Scholar
  25. 25.
    Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interf Sci. 2015;223:40–54.CrossRefGoogle Scholar
  26. 26.
    Akalkotkar A, Tawde SA, Chablani L, D’Souza MJ. Oral delivery of particulate prostate cancer vaccine: in vitro and in vivo evaluation. J Drug Target. 2012;20(4):338–46.CrossRefGoogle Scholar
  27. 27.
    Tawde SA, Chablani L, Akalkotkar A, D’Souza C, Chiriva-Internati M, Selvaraj P, et al. Formulation and evaluation of oral microparticulate ovarian cancer vaccines. Vaccine. 2012;30(38):5675–81.CrossRefGoogle Scholar
  28. 28.
    Ammar HO, Salama HA, Ghorab M, El-Nahhas SA, Elmotasem H. A transdermal delivery system for glipizide. Curr Drug Deliv. 2006;3(3):333–41.CrossRefGoogle Scholar
  29. 29.
    Idrees A, Rahman NU, Javaid Z, Kashif M, Aslam I, Abbas K, et al. In vitro evaluation of transdermal patches of flurbiprofen with ethyl cellulose. Acta Pol Pharm. 2014;71(2):287–95.PubMedGoogle Scholar
  30. 30.
    D’Souza B, Bhowmik T, Uddin MN, Oettinger C, D’Souza M. Development of beta-cyclodextrin-based sustained release microparticles for oral insulin delivery. Drug Dev Ind Pharm. 2015;41(8):1288–93.CrossRefGoogle Scholar
  31. 31.
    Lee JW, Choi SO, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7(4):531–9.CrossRefGoogle Scholar
  32. 32.
    Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. AAPS J. 2011;13(3):473–81.CrossRefGoogle Scholar
  33. 33.
    Bhowmik T, D’Souza B, Shashidharamurthy R, Oettinger C, Selvaraj P, D’Souza MJ. A novel microparticulate vaccine for melanoma cancer using transdermal delivery. J Microencapsul. 2011;28(4):294–300.CrossRefGoogle Scholar
  34. 34.
    Reis e Sousa C, Stahl PD, Austyn JM. Phagocytosis of antigens by Langerhans cells in vitro. J Exp Med. 1993;178(2):509–19.CrossRefGoogle Scholar
  35. 35.
    Morhenn VB, Lemperle G, Gallo RL. Phagocytosis of different particulate dermal filler substances by human macrophages and skin cells. Dermatol Surg. 2002;28(6):484–90.PubMedGoogle Scholar
  36. 36.
    Slutter B, Jiskoot W. Sizing the optimal dimensions of a vaccine delivery system: a particulate matter. Expert Opin Drug Deliv. 2016;13(2):167–70.CrossRefGoogle Scholar
  37. 37.
    Dufour G, Bigazzi W, Wong N, Boschini F, de Tullio P, Piel G, et al. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide. Int J Pharm. 2015;495(2):869–78.CrossRefGoogle Scholar
  38. 38.
    Calabro K, Curtis A, Galarneau JR, Krucker T, Bigio IJ. Gender variations in the optical properties of skin in murine animal models. J Biomed Opt. 2011;16(1):011008.CrossRefGoogle Scholar
  39. 39.
    Gross BP, Wongrakpanich A, Francis MB, Salem AK, Norian LA. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J. 2014;16(6):1194–203.CrossRefGoogle Scholar
  40. 40.
    Iranpour S, Nejati V, Delirezh N, Biparva P, Shirian S. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens. J Exp Clin Cancer Res. 2016;35(1):168.CrossRefGoogle Scholar
  41. 41.
    Joshi VB, Geary SM, Gross BP, Wongrakpanich A, Norian LA, Salem AK. Tumor lysate-loaded biodegradable microparticles as cancer vaccines. Expert Rev Vaccines. 2014;13(1):9–15.CrossRefGoogle Scholar
  42. 42.
    Rainone V, Martelli C, Ottobrini L, Biasin M, Texido G, Degrassi A, et al. Immunological characterization of whole tumour lysate-loaded dendritic cells for Cancer immunotherapy. PLoS One. 2016;11(1):e0146622.CrossRefGoogle Scholar
  43. 43.
    Solbrig CM, Saucier-Sawyer JK, Cody V, Saltzman WM, Hanlon DJ. Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells. Mol Pharm. 2007;4(1):47–57.CrossRefGoogle Scholar
  44. 44.
    Birchall J, Coulman S, Pearton M, Allender C, Brain K, Anstey A, et al. Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch micro-fabricated micro-needles. J Drug Target. 2005;13(7):415–21.CrossRefGoogle Scholar
  45. 45.
    Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004;150(5):869–77.CrossRefGoogle Scholar
  46. 46.
    Dean CH, Alarcon JB, Waterston AM, Draper K, Early R, Guirakhoo F, et al. Cutaneous delivery of a live, attenuated chimeric flavivirus vaccine against Japanese encephalitis (ChimeriVax)-JE) in non-human primates. Hum Vaccin. 2005;1(3):106–11.Google Scholar
  47. 47.
    Mikszta JA, Sullivan VJ, Dean C, Waterston AM, Alarcon JB, Dekker JP 3rd, et al. Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J Infect Dis. 2005;191(2):278–88.CrossRefGoogle Scholar
  48. 48.
    Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain. 2008;24(7):585–94.CrossRefGoogle Scholar
  49. 49.
    Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, et al. Lack of pain associated with microfabricated microneedles. Anesth Analg. 2001;92(2):502–4.CrossRefGoogle Scholar
  50. 50.
    Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med. 2002;8(4):415–9.CrossRefGoogle Scholar
  51. 51.
    Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012;132(2):545–53.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical ScienceWegmans School of Pharmacy, St. John Fisher CollegeRochesterUSA
  2. 2.Research and DevelopmentNexus PharmaceuticalsVernon HillsUSA
  3. 3.Charles River LaboratoriesAshlandUSA
  4. 4.Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy and Health SciencesMercer UniversityAtlantaUSA

Personalised recommendations