The AAPS Journal

, Volume 19, Issue 4, pp 1235–1248 | Cite as

Integrated In Silico Fragment-Based Drug Design: Case Study with Allosteric Modulators on Metabotropic Glutamate Receptor 5

  • Yuemin Bian
  • Zhiwei Feng
  • Peng Yang
  • Xiang-Qun Xie
Research Article
  • 236 Downloads

Abstract

GPCR allosteric modulators target at the allosteric binding pockets of G protein-coupled receptors (GPCRs) with indirect influence on the effects of an orthosteric ligand. Such modulators exhibit significant advantages compared to the corresponding orthosteric ligands, including better chemical tractability or physicochemical properties, improved selectivity, and reduced risk of oversensitization towards their receptors. Metabotropic glutamate receptor 5 (mGlu5), a member of class C GPCRs, is a promising therapeutic target for treating many central nervous system diseases. The crystal structure of mGlu5 in the complex with the negative allosteric modulator mavoglurant was recently reported, providing a fundamental model for designing new allosteric modulators. Computational fragment-based drug discovery represents a powerful scaffold-hopping and lead structure-optimization tool for drug design. In the present work, a set of integrated computational methodologies was first used, such as fragment library generation and retrosynthetic combinatorial analysis procedure (RECAP) for novel compound generation. Then, the compounds generated were assessed by benchmark dataset verification, docking studies, and QSAR model simulation. Subsequently, structurally diverse compounds, with reported or unreported scaffolds, can be observed from top 20 in silico synthesized compounds, which were predicted to be potential mGlu5 modulators. In silico compounds with reported scaffolds may fill SAR holes in known, patented series of mGlu5 modulators. And the generation of compounds without reported tests on mGluR indicates that our approach is doable for exploring and designing novel compounds. Our case study of designing allosteric modulators on mGlu5 demonstrated that the established computational fragment-based approach is a useful methodology for facilitating new compound design in the future.

KEY WORDS

allosteric modulator computational fragment-based drug discovery GPCRs metabotropic glutamate receptor 5 

Supplementary material

12248_2017_93_MOESM1_ESM.docx (852 kb)
Supplementary table 1(DOCX 851 kb)
12248_2017_93_MOESM2_ESM.docx (548 kb)
Supplementary table 2(DOCX 548 kb)
12248_2017_93_MOESM3_ESM.docx (1.2 mb)
Supplementary table 3(DOCX 1180 kb)
12248_2017_93_MOESM4_ESM.docx (465 kb)
Supplementary table 4(DOCX 464 kb)
12248_2017_93_MOESM5_ESM.docx (555 kb)
Supplementary table 5(DOCX 555 kb)

References

  1. 1.
    Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science. 2014;344(6179):58–64.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.CrossRefPubMedGoogle Scholar
  3. 3.
    Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Feng Z, Hu G, Ma S, Xie X-Q. Computational advances for the development of allosteric modulators and bitopic ligands in G protein-coupled receptors. AAPS J. 2015;17(5):1080–95.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wenthur CJ, Gentry PR, Mathews TP, Lindsley CW. Drugs for allosteric sites on receptors. Annu Rev Pharmacol Toxicol. 2014;54:165.CrossRefPubMedGoogle Scholar
  6. 6.
    Wellendorph P, Bräuner-Osborne H. Molecular basis for amino acid sensing by family CG-protein-coupled receptors. Br J Pharmacol. 2009;156(6):869–84.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lane JR, Abdul-Ridha A, Canals M. Regulation of G protein-coupled receptors by allosteric ligands. ACS Chem Neurosci. 2013;4(4):527–34.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Melancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A, et al. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem. 2012;55(4):1445–64.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Christopoulos A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov. 2002;1(3):198–210.CrossRefPubMedGoogle Scholar
  10. 10.
    Conn PJ, Christopoulos A, Lindsley CW. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov. 2009;8(1):41–54.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bridges TM, Lindsley CW. G-protein-coupled receptors: from classical modes of modulation to allosteric mechanisms. ACS Chem Biol. 2008;3(9):530–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Digby GJ, Conn PJ, Lindsley CW. Orthosteric-and allosteric-induced ligand-directed trafficking at GPCRs. Curr Opin Drug Discov Devel. 2010;13(5):587.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Fang Z, Grütter C, Rauh D. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol. 2012;8(1):58–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Möhler H, Fritschy J, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther. 2002;300(1):2–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Pin J-P, Galvez T, Prézeau L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther. 2003;98(3):325–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014;511(7511):557–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Li G, Jørgensen M, Campbell BM. Metabotropic glutamate receptor 5-negative allosteric modulators for the treatment of psychiatric and neurological disorders (2009-July 2013). Pharmaceutical patent analyst. 2013;2(6):767–802.CrossRefPubMedGoogle Scholar
  18. 18.
    Levenga J, Hayashi S, de Vrij FM, Koekkoek SK, van der Linde HC, Nieuwenhuizen I, et al. AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiol Dis. 2011;42(3):311–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Ritzén A, Sindet R, Hentzer M, Svendsen N, Brodbeck RM, Bundgaard C. Discovery of a potent and brain penetrant mGluR5 positive allosteric modulator. Bioorg Med Chem Lett. 2009;19(12):3275–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov. 2007;6(3):211–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Joseph-McCarthy D, Campbell AJ, Kern G, Moustakas D. Fragment-based lead discovery and design. J Chem Inf Model. 2014;54(3):693–704.CrossRefPubMedGoogle Scholar
  22. 22.
    Allen KN, Bellamacina CR, Ding X, Jeffery CJ, Mattos C, Petsko GA, et al. An experimental approach to mapping the binding surfaces of crystalline proteins. J Phys Chem. 1996;100(7):2605–11.CrossRefGoogle Scholar
  23. 23.
    Chessari G, Woodhead AJ. From fragment to clinical candidate—a historical perspective. Drug Discov Today. 2009;14(13):668–75.CrossRefPubMedGoogle Scholar
  24. 24.
    de Kloe GE, Bailey D, Leurs R, de Esch IJ. Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today. 2009;14(13):630–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Jencks WP. On the attribution and additivity of binding energies. Proc Natl Acad Sci. 1981;78(7):4046–50.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov. 2005;4(8):649–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Howard N, Abell C, Blakemore W, Chessari G, Congreve M, Howard S, et al. Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors. J Med Chem. 2006;49(4):1346–55.CrossRefPubMedGoogle Scholar
  28. 28.
    Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, et al. Application of fragment-based lead generation to the discovery of novel, cyclic Amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency §. J Med Chem. 2007;50(24):5912–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Sun C, Petros AM, Hajduk PJ. Fragment-based lead discovery: challenges and opportunities. J Comput Aided Mol Des. 2011;25(7):607–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Loving K, Alberts I, Sherman W. Computational approaches for fragment-based and de novo design. Curr Top Med Chem. 2010;10(1):14–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Schuffenhauer A, Ruedisser S, Marzinzik A, Jahnke W, Selzer P, Jacoby E. Library design for fragment based screening. Curr Top Med Chem. 2005;5(8):751–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Siegal G, Eiso A, Schultz J. Integration of fragment screening and library design. Drug Discov Today. 2007;12(23):1032–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Lepre C. Fragment-based drug discovery using the SHAPES method. Expert Opin Drug Discovery. 2007;2(12):1555–66.CrossRefGoogle Scholar
  34. 34.
    Fjellström O, Akkaya S, Beisel H-G, Eriksson P-O, Erixon K, Gustafsson D, et al. Creating novel activated factor xi inhibitors through fragment based lead generation and structure aided drug design. PLoS One. 2015;10(1):e0113705.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ni S, Yuan Y, Huang J, Mao X, Lv M, Zhu J, et al. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach. J Med Chem. 2009;52(17):5295–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang Z, Mou L, Shen Q, Lu S, Li C, Liu X, et al. ASD v2. 0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res. 2014;42(D1):D510–D6.CrossRefPubMedGoogle Scholar
  37. 37.
    Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, et al. Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl) pyrimidin-4-yl] benzonitrile). J Med Chem. 2015;58(16):6653–64.CrossRefPubMedGoogle Scholar
  38. 38.
    SYBYL-X 1.3 TI, 1699 South Hanley Rd., St. Louis, MO, 63144, USA. 2010. 2010.Google Scholar
  39. 39.
    Feng Z, Ma S, Hu G, Xie X-Q. Allosteric binding site and activation mechanism of class C G-protein coupled receptors: metabotropic glutamate receptor family. AAPS J. 2015;17(3):737–53.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    The PyMOL Molecular graphics system, version 1.5.0.1 Schrodinger, LLC.Google Scholar
  41. 41.
    Lewell XQ, Judd DB, Watson SP, Hann MM. RECAP Retrosynthetic Combinatorial Analysis Procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci. 1998;38(3):511–22.CrossRefPubMedGoogle Scholar
  42. 42.
    Fechner U, Schneider G. Flux (1): a virtual synthesis scheme for fragment-based de novo design. J Chem Inf Model. 2006;46(2):699–707.CrossRefPubMedGoogle Scholar
  43. 43.
    Teague SJ, Davis AM, Leeson PD, Oprea T. The design of leadlike combinatorial libraries. Angew Chem Int Ed. 1999;38(24):3743–8.CrossRefGoogle Scholar
  44. 44.
    Jain AN. Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des. 1996;10(5):427–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Weiner SJ, Kollman PA, Nguyen DT, Case DA. An all atom force field for simulations of proteins and nucleic acids. J Comput Chem. 1986;7(2):230–52.CrossRefGoogle Scholar
  46. 46.
    Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy evaluation. J Comput Chem. 1992;13(4):505–24.CrossRefGoogle Scholar
  47. 47.
    Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57–61.PubMedGoogle Scholar
  48. 48.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19(14):1639–62.CrossRefGoogle Scholar
  49. 49.
    Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;49(23):6789–801.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Weiss DR, Bortolato A, Tehan B, Mason JS. GPCR-bench: a benchmarking set and practitioners’ guide for G protein-coupled receptor docking. J Chem Inf Model. 2016;56(4):642–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem. 2012;55(14):6582–94.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ioele G, De Luca M, Oliverio F, Ragno G. Prediction of photosensitivity of 1, 4-dihydropyridine antihypertensives by quantitative structure-property relationship. Talanta. 2009;79(5):1418–24.CrossRefPubMedGoogle Scholar
  53. 53.
    Raska I, Toropov A. Comparison of QSPR models of octanol/water partition coefficient for vitamins and non vitamins. Eur J Med Chem. 2006;41(11):1271–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Hogg R, Tanis E. Nonparametric methods. Probability and statistical inference. 4th ed. New York: MacMillan Publishing Co; 1993. p. 589–646.Google Scholar
  55. 55.
    Hogg RV, Tanis EA. Solutions Manual, Probability and Statistical Interference: Solutions: Macmillan; 1988.Google Scholar
  56. 56.
    Ertl P. Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci. 2003;43(2):374–80.CrossRefPubMedGoogle Scholar
  57. 57.
    Congreve M, Carr R, Murray C, Jhoti H. A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today. 2003;8(19):876–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Rees DC, Congreve M, Murray CW, Carr R. Fragment-based lead discovery. Nat Rev Drug Discov. 2004;3(8):660–72.CrossRefPubMedGoogle Scholar
  59. 59.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;64:4–17.CrossRefGoogle Scholar
  60. 60.
    Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280(1):1–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Leffler JE. The enthalpy-entropy relationship and its implications for organic chemistry. The Journal of Organic Chemistry. 1955;20(9):1202–31.CrossRefGoogle Scholar
  62. 62.
    Eftink MR, Anusiem A, Biltonen RL. Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A. Biochemistry. 1983;22(16):3884–96.CrossRefPubMedGoogle Scholar
  63. 63.
    Davenport AP, Russell FD. Radioligand binding assays: theory and practice. Current Directions in Radiopharmaceutical Research and Development: Springer; 1996; 169–79.Google Scholar
  64. 64.
    Cui W, Yan X. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR. Chemom Intell Lab Syst. 2009;98(2):130–5.CrossRefGoogle Scholar
  65. 65.
    Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53(7):2719–40.CrossRefPubMedGoogle Scholar
  66. 66.
    Patlewicz G, Jeliazkova N, Safford R, Worth A, Aleksiev B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res. 2008;19(5–6):495–524.CrossRefPubMedGoogle Scholar
  67. 67.
    Bursavich MG, Gilbert AM, Stock JR. Piperazine metabotropic glutamate receptor 5 (MGLUR5) negative allosteric modulators for anxiety/depression. US Patent; 2009.Google Scholar
  68. 68.
    Macdonald G, Tresadern G, Trabanco-Suarez A, Pastor-Fernandez J. Preparation of bicyclic thiazoles as allosteric modulators of mGluR5 receptors. WO Patent; 2011.Google Scholar
  69. 69.
    Imogai H, Mutel V, Duvey GA, Cid-Nunez J, Le Poul E, Lutjens R. Novel thieno-pyridine and thieno-pyrimidine derivatives and their use as positive allosteric modulators of mGluR2-receptors. US Patent; 2005.Google Scholar
  70. 70.
    Conn J, Lindsley C, Weaver C, Stauffer S, Williams R, McDonald G, et al. Preparation of O-benzyl nicotinamide analogs as mGluR5 positive allosteric modulators. WO Patent. 2011;Google Scholar
  71. 71.
    Imogai HJ, Cid-Nunez JM, Andres-Gil JI, Trabanco-Suarez AA, Santamarina JO, Dautzenberg FM, et al.. 1, 4-Disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of MGLUR2-receptors. US Patent; 2014.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Yuemin Bian
    • 1
    • 2
    • 3
  • Zhiwei Feng
    • 1
    • 2
    • 3
  • Peng Yang
    • 1
    • 2
    • 3
  • Xiang-Qun Xie
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of PharmacyUniversity of PittsburghPittsburghUSA
  2. 2.NIDA National Center of Excellence for Computational Drug Abuse ResearchUniversity of PittsburghPittsburghUSA
  3. 3.Drug Discovery InstituteUniversity of PittsburghPittsburghUSA
  4. 4.Department of Computational Biology, School of MedicineUniversity of PittsburghPittsburghUSA
  5. 5.Department of Structural Biology, School of MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations