The AAPS Journal

, Volume 19, Issue 4, pp 1175–1185 | Cite as

Controlled Release of Second Generation mTOR Inhibitors to Restrain Inflammation in Primary Immune Cells

  • Emily A. Gosselin
  • Lisa H. Tostanoski
  • Christopher M. Jewell
Research Article


Autoimmune disease occurs when the immune system incorrectly targets the body’s own tissue. Inflammatory CD4+ T cell phenotypes, such as TH1 and TH17, are key drivers of this attack. Recent studies demonstrate treatment with rapamycin—a key inhibitor of the mTOR pathway—can skew T cell development, moving T cell responses away from inflammatory phenotypes and toward regulatory T cells (TREGS). TREGS are important in inducing and maintaining tolerance to self-antigens, creating new potential to treat autoimmune diseases more effectively and specifically. Next generation analogs of rapamycin, such as everolimus and temsirolimus, confer increased potency with reduced toxicity, but are understudied in the context of autoimmunity. Further, these drugs are still broadly-acting and require frequent treatment due to short half-lives. Thus, there is strong interest in harnessing the unique properties of biomaterials—controlled drug release and targeting, for example, to improve autoimmune therapies. Using second generation mTOR inhibitors and rapamycin, we prepared sets of degradable polymer particles from poly(lactide-co-glycolide). We then used these materials to assess physicochemical properties and the ability to control autoimmune inflammation in a primary cell co-culture model. Treatment with particle formulations resulted in significant dose-dependent decreases in dendritic cell activation, T cell proliferation, inflammatory cytokines, and frequencies of inflammatory TH1 phenotypes. Considering the current limitations of rapamycin, and the potential of next-generation analogs, this work provides a screening platform for biomaterials and sets the stage for in vivo evaluation, where delivery kinetics, stability, and targeting could improve autoimmune therapies through biomaterial-enabled delivery.


controlled release immune tolerance and autoimmunity microparticle and nanoparticle rapamycin, everolimus, and temsirolimus vaccine and immunotherapy 

Supplementary material

12248_2017_89_MOESM1_ESM.pdf (479 kb)
ESM 1(PDF 478 kb)


  1. 1.
    Pollizzi KN, Powell JD. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 2015;36(1):13–20. doi:10.1016/ Scholar
  2. 2.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93. doi:10.1016/j.cell.2012.03.017.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tsang CK, Qi HY, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today. 2007;12(3–4):112–24. doi:10.1016/j.drudis.2006.12.008.CrossRefPubMedGoogle Scholar
  4. 4.
    Abu-Khalaf MM, Baumgart MA, Gettinger SN, Doddamane I, Tuck DP, Hou S, et al. Phase 1b study of the mammalian target of rapamycin inhibitor sirolimus in combination with nanoparticle albumin-bound paclitaxel in patients with advanced solid tumors. Cancer. 2015;121(11):1817–26. doi:10.1002/cncr.29254.CrossRefPubMedGoogle Scholar
  5. 5.
    Maldonado RA, LaMothe RA, Ferrari JD, Zhang AH, Rossi RJ, Kolte PN, et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A. 2015;112(2):E156–E65. doi:10.1073/pnas.1408686111.CrossRefPubMedGoogle Scholar
  6. 6.
    Perl A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol. 2016;12(3):169–82. doi:10.1038/nrrheum.2015.172.CrossRefPubMedGoogle Scholar
  7. 7.
    Lisi L, Navarra P, Cirocchi R, Sharp A, Stigliano E, Feinstein DL, et al. Rapamycin reduces clinical signs and neuropathic pain in a chronic model of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2012;243(1–2):43–51. doi:10.1016/j.jneuroim.2011.12.018.CrossRefPubMedGoogle Scholar
  8. 8.
    Esposito M, Ruffini F, Bellone M, Gagliani N, Battaglia M, Martino G, et al. Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J Neuroimmunol. 2010;220(1–2):52–63. doi:10.1016/j.jneuroim.2010.01.001.CrossRefPubMedGoogle Scholar
  9. 9.
    Gu ZF, Tan W, Ji J, Feng GJ, Meng Y, Da ZY, et al. Rapamycin reverses the senescent phenotype and improves immuno-regulation of mesenchymal stem cells from MRL/lpr mice and systemic lupus erythematosus patients through inhibition of the mTOR signaling pathway. Aging-US. 2016;8(5):1102–14.CrossRefGoogle Scholar
  10. 10.
    Wu W, He ZF, Zhang ZL, Yu XX, Song ZM, Li XY. Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model. Int J Pharm. 2016;513(1–2):238–46. doi:10.1016/j.ijpharm.2016.09.013.CrossRefPubMedGoogle Scholar
  11. 11.
    Tostanoski LH, Chiu Y-C, Gammon JM, Simon T, Andorko JI, Bromberg JS, et al. Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. Cell Rep. 2016;16(11):2940–52.CrossRefPubMedGoogle Scholar
  12. 12.
    Nguyen QD, Merrill PT, Clark WL, Banker AS, Fardeau C, Franco P, et al. Intravitreal sirolimus for noninfectious uveitis: a phase III sirolimus study assessing double-masked uveitis treatment (SAKURA). Ophthalmology. 2016;123(11):2413–23. doi:10.1016/j.ophtha.2016.07.029.CrossRefPubMedGoogle Scholar
  13. 13.
    Yuan RR, Kay A, Berg WJ, Lebwohl D. Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol. 2009;2:12. doi:10.1186/1756-8722-2-45.CrossRefGoogle Scholar
  14. 14.
    Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C, et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005;23(23):5314–22. doi:10.1200/jco.2005.66.130.CrossRefPubMedGoogle Scholar
  15. 15.
    O’Donnell A, Faivre S, Burris HA, Rea D, Papadimitrakopoulou V, Shand N, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol. 2008;26(10):1588–95. doi:10.1200/jco.2007.14.0988.CrossRefPubMedGoogle Scholar
  16. 16.
    Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia. 2011;25(2):341–7. doi:10.1038/leu.2010.226.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011;117(22):5094–102. doi:10.1002/cncr.26165.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fleming GF, Ma CX, Huo DZ, Sattar H, Tretiakova M, Lin L, et al. Phase II trial of temsirolimus in patients with metastatic breast cancer. Breast Cancer Res Treat. 2012;136(2):355–63. doi:10.1007/s10549-011-1910-7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang YJ, Zhu LL, Bourantas CV, Iqbal J, Dong SJ, Campos CM, et al. The impact of everolimus versus other rapamycin derivative-eluting stents on clinical outcomes in patients with coronary artery disease: a meta-analysis of 16 randomized trials. J Cardiol. 2014;64(3–4):185–93. doi:10.1016/j.jjcc.2014.01.007.CrossRefPubMedGoogle Scholar
  20. 20.
    Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med. 2003;349(9):847–58. doi:10.1056/NEJMoa022171.CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng L, Chen JL, Mao XL. Everolimus vs. rapamycin for treating diabetic nephropathy in diabetic mouse model. J Huazhong Univ Sci Technolog Med Sci. 2011;31(4):457–62. doi:10.1007/s11596-011-0473-5.
  22. 22.
    Fagone P, Donia M, Mangano K, Quattrocchi C, Mammana S, Coco M, et al. Comparative study of rapamycin and temsirolimus demonstrates superimposable anti-tumour potency on prostate cancer cells. Basic Clin Pharmacol Toxicol. 2013;112(1):63–9. doi:10.1111/j.1742-7843.2012.00923.x.
  23. 23.
    Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747. doi:10.1146/annurev.immunol.23.021704.115707.CrossRefPubMedGoogle Scholar
  24. 24.
    Comabella M, Khoury SJ. Immunopathogenesis of multiple sclerosis. Clin Immunol. 2012;142(1):2–8. doi:10.1016/j.clim.2011.03.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Waickman AT, Powell JD. Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells. J Immunol. 2012;188(10):4721–9. doi:10.4049/jimmunol.1103143.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev. 2012;249:43–58. doi:10.1111/j.1600-065X.2012.01152.x.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity. 2010;33(3):301–11. doi:10.1016/j.immuni.2010.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sakaguchi S. Naturally arising CD4(+) regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62. doi:10.1146/annurev.immunol.21.120601.141122.CrossRefPubMedGoogle Scholar
  29. 29.
    Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25(+) CD4(+) regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32. doi:10.1034/j.1600-065X.2001.1820102.x.CrossRefPubMedGoogle Scholar
  30. 30.
    Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3(+)CD25(+)CD4(+) natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27. doi:10.1111/j.0105-2896.2006.00427.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Battaglia M, Stabilini A, Draghici E, Migliavacca B, Gregori S, Bonifacio E, et al. Induction of tolerance in type 1 diabetes via both CD4(+) CD25(+) T regulatory cells and T regulatory type 1 cells. Diabetes. 2006;55(6):1571–80. doi:10.2337/db05-1576.CrossRefPubMedGoogle Scholar
  32. 32.
    Han RR, Gao J, Zhai H, Xiao JT, Ding YN, Hao JW. RAD001 (everolimus) attenuates experimental autoimmune neuritis by inhibiting the mTOR pathway, elevating Akt activity and polarizing M2 macrophages. Exp Neurol. 2016;280:106–14. doi:10.1016/j.expneurol.2016.04.005.CrossRefPubMedGoogle Scholar
  33. 33.
    Hennig M, Bauer D, Wasmuth S, Busch M, Walscheid K, Thanos S, et al. Everolimus improves experimental autoimmune uveoretinitis. Exp Eye Res. 2012;105:43–52. doi:10.1016/j.exer.2012.09.003.CrossRefPubMedGoogle Scholar
  34. 34.
    Gammon JM, Tostanoski LH, Adapa AR, Chiu YC, Jewell CM. Controlled delivery of a metabolic modulator promotes regulatory T cells and restrains autoimmunity. J Control Release. 2015;210:169–78. doi:10.1016/j.jconrel.2015.05.277.CrossRefPubMedGoogle Scholar
  35. 35.
    Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30(12):1217. doi:10.1038/nbt.2434.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tostanoski LH, Gosselin EA, Jewell CM. Targeting and control of antigen presenting cells with biomaterials to promote tolerance and combat autoimmune disease. Discov Med. 2016;21:403–10.PubMedGoogle Scholar
  37. 37.
    Andorko JI, Hess KL, Jewell CM. Harnessing biomaterials to engineer the lymph node microenvironment for immunity or tolerance. AAPS J. 2015;17(2):323–38. doi:10.1208/s12248-014-9708-2.CrossRefPubMedGoogle Scholar
  38. 38.
    Peine KJ, Guerau-de-Arellano M, Lee P, Kanthamneni N, Severin M, Probst GD, et al. Treatment of experimental autoimmune encephalomyelitis by Codelivery of disease associated peptide and dexamethasone in cetalated dextran microparticles. Mol Pharm. 2014;11(3):828–35. doi:10.1021/mp4005172.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano. 2014;8(3):2148–60. doi:10.1021/nn405033r.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tostanoski LH, Jewell CM. Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev. 2017; doi:10.1016/j.addr.2017.03.005.PubMedGoogle Scholar
  41. 41.
    Hess KL, Andorko JI, Tostanoski LH, Jewell CM. Polyplexes assembled from self-peptides and regulatory nucleic acids blunt toll-like receptor signaling to combat autoimmunity. Biomaterials. 2017;118:51–62. doi:10.1016/j.biomaterials.2016.11.052.CrossRefPubMedGoogle Scholar
  42. 42.
    Yeste A, Nadeau M, Burns EJ, Weiner HL, Quintana FJ. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2012;109(28):11270–5. doi:10.1073/pnas.1120611109.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Haddadi A, Elamanchili P, Lavasanifar A, Das S, Shapiro J, Samuel J. Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A. 2008;84A(4):885–98. doi:10.1002/jbm.a.31373.CrossRefGoogle Scholar
  44. 44.
    Andorko JI, Tostanoski LH, Solano E, Mukhamedova M, Jewell CM. Intra-lymph node injection of biodegradable polymer particles. J Vis Exp. 2014;83:6. doi:10.3791/50984.
  45. 45.
    Jewell CM, Lopez SCB, Irvine DJ. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci U S A. 2011;108(38):15745–50. doi:10.1073/pnas.1105200108.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Battaglia M, Stabilini A, Tresoldi E. Expanding human T regulatory cells with the mTOR-inhibitor rapamycin. In: Weichhart T, editor. Mtor: Methods and protocols. Totowa: Humana Press Inc; 2012. p. 279–93.CrossRefGoogle Scholar
  47. 47.
    He SR, Zhang Y, Wang D, Tao K, Zhang S, Wei LL, et al. Rapamycin/GABA combination treatment ameliorates diabetes in NOD mice. Mol Immunol. 2016;73:130–7. doi:10.1016/j.molimm.2016.01.008.CrossRefPubMedGoogle Scholar
  48. 48.
    Manirarora JN, Wei CH. Combination therapy using IL-2/IL-2 monoclonal antibody complexes, rapamycin, and islet autoantigen peptides increases regulatory T cell frequency and protects against spontaneous and induced type 1 diabetes in nonobese diabetic mice. J Immunol. 2015;195(11):5203–14. doi:10.4049/jimmunol.1402540.CrossRefPubMedGoogle Scholar
  49. 49.
    Northrup L, Sullivan BP, Hartwell BL, Garza A, Berkland C. Screening immunomodulators to skew the antigen-specific autoimmune response. Mol Pharm. 2017;14(1):66–80. doi:10.1021/acs.molpharmaceut.6b00725.CrossRefPubMedGoogle Scholar
  50. 50.
    Andorko JI, Hess KL, Pineault KG, Jewell CM. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. Acta Biomater. 2016;32:24–34. doi:10.1016/j.actbio.2015.12.026.CrossRefPubMedGoogle Scholar
  51. 51.
    Park J, Babensee JE. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 2012;8(10):3606–17. doi:10.1016/j.actbio.2012.06.006.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Park J, Gerber MH, Babensee JE. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J Biomed Mater Res A. 2015;103(1):170–84. doi:10.1002/jbm.a.35150.CrossRefPubMedGoogle Scholar
  53. 53.
    Andorko JI, Pineault KG, Jewell CM. Impact of molecular weight on the intrinsic immunogenic activity of poly(beta amino esters). J Biomed Mater Res A. 2017;105(4):1219–29. doi:10.1002/jbm.a.35970.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreUSA
  3. 3.Marlene and Stewart Greenebaum Cancer CenterBaltimoreUSA
  4. 4.United States Department of Veterans AffairsBaltimoreUSA

Personalised recommendations