Advertisement

The AAPS Journal

, Volume 19, Issue 4, pp 1091–1101 | Cite as

Dissolution comparisons using a Multivariate Statistical Distance (MSD) test and a comparison of various approaches for calculating the measurements of dissolution profile comparison

  • J-M. CardotEmail author
  • B. Roudier
  • H. Schütz
Research Article

Abstract

The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited—as in the case of the f 2 test—to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable—without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.

KEY WORDS

dissolution multivariate statistical difference MSD Weibull f2 

Notes

Acknowledgments

The authors thank Vinod P. Shah (Pharmaceutical Consultant, North Potomac, MD, USA) for his great discussions during the development of this work.

Compliance with Ethical Standards

Disclaimer

All R codes provided are non-validated and only given as example of algorithm that could be used.

Supplementary material

12248_2017_63_MOESM1_ESM.pdf (404 kb)
ESM 1 (PDF 403 kb)
12248_2017_63_MOESM2_ESM.html (738 kb)
ESM 2 (HTML 737 kb)
12248_2017_63_MOESM3_ESM.pdf (652 kb)
ESM 3 (PDF 651 kb)

References

  1. 1.
    Sathe PM, Tsong Y, Shah VP. In-vitro dissolution profile comparison: statistics and analysis, model dependent approach. Pharm Res. 1996;13(12):1799–803.CrossRefPubMedGoogle Scholar
  2. 2.
    Shah VP, Tsong Y, Sathe P, Liu JP. In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15(6):889–96.CrossRefPubMedGoogle Scholar
  3. 3.
    U.S. Food and Drug Administration. Guidance for industry dissolution testing of immediate release solid oral dosage forms. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). August 1997; http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070237.pdf Accessed 15 Feb 2016.
  4. 4.
    U.S. Food and Drug Administration. Guidance for industry: immediate release solid oral dosage forms. Scale-up and post-approval changes: chemistry, manufacturing and controls, in vitro dissolution testing, and in vivo bioequivalence documentation [SUPAC-IR]. November 1995; http://www.fda.gov/downloads/Drugs/.../Guidances/UCM070636.pdf Accessed 15 Feb 2016.
  5. 5.
    European Medicines Agency. CPMP/EWP/QWP/1401/98 Rev. 1 Committee for Medicinal Products for Human Use (CHMP). 2010; Guideline on the Investigation of Bioequivalence. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf (2010) Accessed 15 Feb 2016.
  6. 6.
    Adams E, Coomans D, Smeyers-Verbeke J, Massart DL. Application of linear mixed effects models to the evaluation of dissolution profiles. Int J Pharm. 2001;226:107–25. doi: 10.1016/S0378-5173(01)00775-X.CrossRefPubMedGoogle Scholar
  7. 7.
    Adams E, Coomans D, Smeyers-Verbeke J, Massart DL. Non-linear mixed effects models for the evaluation of dissolution profiles. Int J Pharm. 2002;240(1–2):37–53. doi: 10.1016/S0378-5173(02)00127-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17(4–5):811–22.CrossRefPubMedGoogle Scholar
  9. 9.
    Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33. doi: 10.1016/S0928-0987(01)00095-1.CrossRefPubMedGoogle Scholar
  10. 10.
    Dedík L, Durisová M. System-approach methods for modeling and testing similarity of in vitro dissolutions of drug dosage formulations. Comput Methods Prog Biomed. 2002;69(1):49–55. doi: 10.1016/S0169-2607(01)00188-2.CrossRefGoogle Scholar
  11. 11.
    Gomez-Mantilla JD, Casabo VG, Schaefer UF, Lehr CM. Permutation test (PT) and tolerated difference test (TDT): two new, robust and powerful nonparametric tests for statistical comparison of dissolution profiles. Int J Pharm. 2013;441(1–2):458–67. doi: 10.1016/j.ijpharm.2012.11.008.CrossRefPubMedGoogle Scholar
  12. 12.
    Gomez-Mantilla JD, Schaefer UF, Casabo VG, Lehr T, Lehr CM. Statistical comparison of dissolution profiles to predict the bioequivalence of extended release formulations. AAPS J. 2014;16(4):791–801. doi: 10.1208/s12248-014-9615-6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hogarty K, Ferron J, Hess M, Kromrey J A Macro for computing point estimates and confidence intervals for Mahalanobis distance, Paper 163–30, SUGI 30, Philadelphia, Pennsylvania, 2005, http://www2.sas.com/proceedings/sugi30/163-30.pdf, accessed July 20, 2016
  14. 14.
    Ma MC, Wang BBC, Liu JP, Tsong Y. Assessment of similarity between dissolution profiles. J Biopharm Stat. 2000;10(2):229–49. doi: 10.1081/BIP-100101024.CrossRefPubMedGoogle Scholar
  15. 15.
    Ma MC, Lin RP, Liu JP. Statistical evaluations of dissolution similarity. Stat Sin. 1999;9(4):1011–27.Google Scholar
  16. 16.
    Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20(6):64–74.Google Scholar
  17. 17.
    Novick S, Shen Y, Yang H, Peterson J, LeBlond D, Altan S. Dissolution curve comparisons through the F(2) parameter, a Bayesian extension of the f(2) statistic. J Biopharm Stat. 2015;25(2):351–71. doi: 10.1080/10543406.2014.971175.CrossRefPubMedGoogle Scholar
  18. 18.
    O’Hara T, Dunne A, Kinahan A, Cunningham S, Stark P, Devane J. Review of methodologies for the comparison of dissolution profile data. Adv Exp Med Biol. 1997;423:167–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Polli J, McLean A. Novel direct curve comparison metrics for bioequivalence. Pharm Res. 2001;18(6):734–41.CrossRefPubMedGoogle Scholar
  20. 20.
    Saranadasa H, Krishnamoorthy K. A multivariate test for similarity of two dissolution profiles. J Biopharm Stat. 2005;15(2):265–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Tsong Y, Hammerstrom T, Sathe P, Shah V. Statistical assessment of mean differences between two dissolution data sets. Drug Inf J. 1996;30(4):1105–12.Google Scholar
  22. 22.
    Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int J Pharm. 2000;209(1–2):57–67. doi: 10.1016/S0378-5173(00)00554-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Mangas-Sanjuan V, Colon-Useche S, Gonzalez-Alvarez I, Bermejo M, Garcia-Arieta A. Assessment of the regulatory methods for the comparison of highly variable dissolution profiles. AAPS J. 2016 Nov;18(6):1550–61. doi: 10.1208/s12248-016-9971-5.CrossRefPubMedGoogle Scholar
  24. 24.
    Wicklin R. What is Mahalanobis distance? http://blogs.sas.com/content/iml/2012/02/15/what-is-mahalanobis-distance.html, accessed July 23rd, 2016
  25. 25.
    Box G. A general distribution theory for a class of likelihood criteria. Biometrika. 1949;36:317–46.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.UFR Pharmacie, Medis, Biopharmaceutical DepartmentClermont Auvergne UniversityClermont-FerrandFrance
  2. 2.ESIEENoisy le Grand CedexFrance
  3. 3.BEBACViennaAustria

Personalised recommendations