Advertisement

The AAPS Journal

, Volume 19, Issue 1, pp 234–243 | Cite as

Inkjet Printing of Proteins: an Experimental Approach

  • Miguel Montenegro-Nicolini
  • Víctor Miranda
  • Javier O. MoralesEmail author
Research Article

Abstract

Peptides and proteins represent a promissory group of molecules used by the pharmaceutical industry for drug therapy with great potential for development. However, the administration of these molecules presents a series of difficulties, making necessary the exploration of new alternatives like the buccal route of administration to improve drug therapy compliance. Although drop-on demand printers have been explored for small molecule drugs with promising results, the development of delivery systems for peptides and proteins through inkjet printing has seen little development. Therefore, the aim of this study was to assess the feasibility of using a thermal inkjet printing system for dispensing lysozyme and ribonuclease-A as model proteins. To address the absorption limitations of a potential buccal use, a permeation enhancer (sodium deoxycholate) was also studied in formulations. We found that a conventional printer successfully printed both proteins, exhibiting very high printing efficiency. Furthermore, the protein structure was not affected and minor effects were observed in the enzymatic activity after the printing process. In conclusion, we provide evidence for the usage of an inexpensive, easy to use, reliable, and reproducible thermal inkjet printing system to dispense proteins solutions for potential buccal application. Our research significantly contributes to present an alternative for manufacturing biologics delivery systems, with emphasis in buccal applications. Next steps of developments will be aimed at the use of new materials for printing, controlled release, and protection strategies for proteins and peptides.

KEY WORDS

buccal films inkjet printing lysozyme peptides ribonuclease-A 

Notes

Acknowledgments

M. Montenegro-Nicolini acknowledges the funding support from CONICYT 21150995. J.O. Morales thanks the financial support from FONDECYT 11130235 and FONDAP 15130011.

Compliance with Ethical Standards

Conflict of Interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of this article.

References

  1. 1.
    Kinch MS. An overview of FDA-approved biologics medicines. Drug Discov Today. 2015;20(4):393–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Mack GS. Pfizer dumps Exubera. Nat Biotechnol. 2007;25(12):1331–2.CrossRefPubMedGoogle Scholar
  3. 3.
    Muñoz-Torres M, Alonso G, Raya MP. Calcitonin therapy in osteoporosis. Treat Endocrinol. 2004;3(2):117–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77(2):187–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech [Internet]. 2016 Apr 15 [cited 2016 Apr 19]; Available from: http://link.springer.com. doi: 10.1208/s12249-016-0525-z.
  6. 6.
    Silva BMA, Borges AF, Silva C, Coelho JFJ, Simões S. Mucoadhesive oral films: the potential for unmet needs. Int J Pharm. 2015;494(1):537–51.CrossRefPubMedGoogle Scholar
  7. 7.
    MonoSol Rx. MonoSol Rx and the PharmFilm pipeline [Internet]. 2015 [cited 2015 Nov 16]. Available from: http://www.monosolrx.com/content/pipeline/overview.htm.
  8. 8.
    Bala R, Pawar P, Khanna S, Arora S. Orally dissolving strips: a new approach to oral drug delivery system. Int J Pharm Investig. 2013;3(2):67–76.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lindén M. Hot-melt extrusion of modified release pellets-influence of the formulation and extrusion process on extended-and enteric release profile. 2012 [cited 2015 Nov 1]; Available from: http://publications.lib.chalmers.se/records/fulltext/158879.pdf.
  10. 10.
    Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm [Internet]. 2012 [cited 2015 Oct 21];2012. Available from: http://downloads.hindawi.com/journals/isrn.pharmaceutics/2012/436763.pdf.
  11. 11.
    Janßen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology—a new manufacturing process for orodispersible films. Int J Pharm. 2013;441(1–2):818–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Cespi M, Bonacucina G, Mencarelli G, Casettari L, Palmieri GF. Dynamic mechanical thermal analysis of hypromellose 2910 free films. Eur J Pharm Biopharm. 2011;79(2):458–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Buanz ABM, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: effect on mechanical properties and physical stability. Int J Pharm. 2015;494(2):611–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Genina N, Fors D, Vakili H, Ihalainen P, Pohjala L, Ehlers H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012;47(3):615–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Mueannoom W, Srisongphan A, Taylor KMG, Hauschild S, Gaisford S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur J Pharm Biopharm. 2012;80(1):149–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Castro PM, Fonte P, Sousa F, Madureira AR, Sarmento B, Pintado ME. Oral films as breakthrough tools for oral delivery of proteins/peptides. J Control Release. 2015;211:63–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22(6):673–85.CrossRefPubMedGoogle Scholar
  18. 18.
    Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4(4):703.CrossRefGoogle Scholar
  19. 19.
    Delaney JT, Smith PJ, Schubert US. Inkjet printing of proteins. Soft Matter. 2009;5(24):4866.CrossRefGoogle Scholar
  20. 20.
    Meléndez PA, Kane KM, Ashvar CS, Albrecht M, Smith PA. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci. 2008;97(7):2619–36.CrossRefPubMedGoogle Scholar
  21. 21.
    Essel JT, Ihnen AC, Carter JD. Production of naproxen nanoparticle colloidal suspensions for inkjet printing applications. Ind Eng Chem Res. 2014;53(7):2726–31.CrossRefGoogle Scholar
  22. 22.
    Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm. 2013;453(2):488–97.CrossRefPubMedGoogle Scholar
  23. 23.
    Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100.CrossRefPubMedGoogle Scholar
  24. 24.
    Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28(10):2386–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85(3):1075–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Lonini L, Accoto D, Petroni S, Guglielmelli E. Dispensing an enzyme-conjugated solution into an ELISA plate by adapting ink-jet printers. J Biochem Biophys Methods. 2008;70(6):1180–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Le HP. Progress and trends in ink-jet printing technology [Internet]. 1998 [cited 2015 Mar 28]. Available from: http://ist.publisher.ingentaconnect.com/content/ist/jist/1998/00000042/00000001/art00007.
  28. 28.
    Yun YH, Lee BK, Choi JS, Kim S, Yoo B, Kim YS, et al. A glucose sensor fabricated by piezoelectric inkjet printing of conducting polymers and bienzymes. Anal Sci Int J Jpn Soc Anal Chem. 2011;27(4):375.CrossRefGoogle Scholar
  29. 29.
    Cao A, Wang G, Tang Y, Lai L. Linear correlation between thermal stability and folding kinetics of lysozyme. Biochem Biophys Res Commun. 2002;291(4):795–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Stelea SD, Pancoska P, Benight AS, Keiderling TA. Thermal unfolding of ribonuclease A in phosphate at neutral pH: deviations from the two-state model. Protein Sci Publ Protein Soc. 2001;10(5):970–8.CrossRefGoogle Scholar
  31. 31.
    Merck KGaA. Product information: Glycerol 85%. Darmstadt, Germany.Google Scholar
  32. 32.
    Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85(1–3):129–40.CrossRefGoogle Scholar
  33. 33.
    Samstein RM, Perica K, Balderrama F, Look M, Fahmy TM. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials. 2008;29(6):703–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Sahni J, Raj S, Ahmad FJ, Khar RK. Design and in vitro characterization of buccoadhesive drug delivery system of insulin. Indian J Pharm Sci. 2008;70(1):61–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wickström H, Palo M, Rijckaert K, Kolakovic R, Nyman JO, Määttänen A, et al. Improvement of dissolution rate of indomethacin by inkjet printing. Eur J Pharm Sci. 2015;75:91–100.CrossRefPubMedGoogle Scholar
  36. 36.
    Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm [Internet]. [cited 2015 Mar 28]; Available from: http://www.sciencedirect.com/science/article/pii/S0378517315002331.
  37. 37.
    Huang T, Long M, Huo B. Competitive binding to cuprous ions of protein and BCA in the bicinchoninic acid protein assay. Open Biomed Eng J. 2010;4:271–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shugar D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme. Biochim Biophys Acta. 1952;8:302–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Crook EM, Mathias AP, Rabin BR. Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2′:3′-phosphate. Biochem J. 1960;74(2):234–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hoes C, van Batenburg OD, Kerling KE, Havinga E. Enzymatic hydrolysis of 2ʹ,3ʹ-cyclic CMP by homohistidine-12-ribonuclease Sʹ. Biochem Biophys Res Commun. 1977;77(3):1074–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Sigma-Aldrich. Product information: lysozyme from chicken egg white for molecular biology. St. Louis, USA.Google Scholar
  42. 42.
    Sigma-Aldrich. Product information: ribonuclease A from bovine pancreas for molecular biology. St. Louis, USA.Google Scholar
  43. 43.
    Rathbone M, Senel S, Pather I. Oral mucosal drug delivery and therapy. Springer; 2015. 289 p.Google Scholar
  44. 44.
    Fan X, Li J, Liu H, Xu N. Using porous polyethylene sheets in late surgical intervention for orbital blowout fractures. Zhonghua Yan Ke Za Zhi [Chin J Ophthalmol]. 2003;39(9):516–9.Google Scholar
  45. 45.
    Recek N, Jaganjac M, Kolar M, Milkovic L, Mozetič M, Stana-Kleinschek K, et al. Protein adsorption on various plasma-treated polyethylene terephthalate substrates. Molecules. 2013;18(10):12441–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Di Risio S, Yan N. Piezoelectric ink-jet printing of horseradish peroxidase: effect of ink viscosity modifiers on activity. Macromol Rapid Commun. 2007;28(18–19):1934–40.CrossRefGoogle Scholar
  47. 47.
    Ferraro P, Coppola S, Grilli S, Paturzo M, Vespini V. Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nat Nanotechnol. 2010;5(6):429–35.CrossRefPubMedGoogle Scholar
  48. 48.
    Kisler JM, Stevens GW, O Connor AJ. Adsorption of proteins on mesoporous molecular sieves. Mater Phys Mech. 2001;4:89–93.Google Scholar
  49. 49.
    Ramm LE, Whitlow MB, Mayer MM. The relationship between channel size and the number of C9 molecules in the C5b-9 complex. J Immunol Baltim Md 1950. 1985;134(4):2594–9.Google Scholar
  50. 50.
    Sousa SG, Delgadillo I, Saraiva JA. Effect of thermal pasteurisation and high-pressure processing on immunoglobulin content and lysozyme and lactoperoxidase activity in human colostrum. Food Chem. 2014;151:79–85.CrossRefPubMedGoogle Scholar
  51. 51.
    Singh J, Unlu Z, Ranganathan R, Griffiths P. Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles. J Phys Chem B. 2008;112(13):3997–4008.CrossRefPubMedGoogle Scholar
  52. 52.
    Gibson M. Pharmaceutical preformulation and formulation: a practical guide from candidate drug selection to commercial dosage form. CRC Press; 2016. 562 p.Google Scholar
  53. 53.
    Zafra-Gómez A, Luzón-Toro B, Capel-Cuevas S, Morales JC. Stability of hydroxytyrosol in aqueous solutions at different concentration, temperature and with different ionic content: a study using UPLC-MS. Food Nutr Sci. 2011;2(10):1114–20.CrossRefGoogle Scholar
  54. 54.
    Goodall S, Chew N, Chan K, Auriac D, Waters MJ. Aerosolization of protein solutions using thermal inkjet technology. J Aerosol Med Off J Int Soc Aerosols Med. 2002;15(3):351–7.CrossRefGoogle Scholar
  55. 55.
    Ikeda K, Hamaguchi K, Miwa S, Nishina T. Circular dichroism of human lysozyme. J Biochem (Tokyo). 1972;71(3):371–8.Google Scholar
  56. 56.
    Bertucci C, Pistolozzi M, De Simone A. Structural characterization of recombinant therapeutic proteins by circular dichroism. Curr Pharm Biotechnol. 2011;12(10):1508–16.CrossRefPubMedGoogle Scholar
  57. 57.
    Rawat S, Gupta P, Kumar A, Garg P, Suri CR, Sahoo DK. Molecular mechanism of poly(vinyl alcohol) mediated prevention of aggregation and stabilization of insulin in nanoparticles. Mol Pharm. 2015;12(4):1018–30.CrossRefPubMedGoogle Scholar
  58. 58.
    Wu F-G, Jiang Y-W, Chen Z, Yu Z-W. Folding behaviors of protein (Lysozyme) confined in polyelectrolyte complex micelle. Langmuir. 2016;32(15):3655–64.CrossRefPubMedGoogle Scholar
  59. 59.
    Ashton L, Dusting J, Imomoh E, Balabani S, Blanch EW. Shear-induced unfolding of lysozyme monitored in situ. Biophys J. 2009;96(10):4231–6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    CRC Handbook of Chemistry and Physics, 94th Edition [Internet]. CRC Press. 2013 [cited 2016 May 22]. Available from: https://www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-94th-Edition/Haynes/p/book/9781466571143.

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • Miguel Montenegro-Nicolini
    • 1
    • 2
  • Víctor Miranda
    • 1
  • Javier O. Morales
    • 1
    • 3
    Email author
  1. 1.Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical SciencesUniversity of ChileSantiagoChile
  2. 2.Instituto de Salud Pública de ChileSantiagoChile
  3. 3.Advanced Center for Chronic Diseases (ACCDiS)SantiagoChile

Personalised recommendations