Advertisement

The AAPS Journal

, Volume 19, Issue 1, pp 103–109 | Cite as

The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs

  • Robert R. Smith
  • Umang V. Shah
  • Jose V. Parambil
  • Daniel J. Burnett
  • Frank Thielmann
  • Jerry Y. Y. HengEmail author
Research Article Theme: Next Generation Formulation Design: Innovations in Material Selection and Functionality
Part of the following topical collections:
  1. Theme: Next Generation Formulation Design: Innovations in Material Selection and Functionality

Abstract

The aim of this work was to assess the effect of different crystalline polymorphism on surface energetics of D-mannitol using finite dilution inverse gas chromatography (FD-IGC). Pure α, β and δ polymorphs were prepared via solution crystallisation and characterised by powder X-ray diffraction (P-XRD). The dispersive surface energies were found to range from 43 to 34 mJ/m2, 50 to 41 mJ/m2, and 48 to 38 mJ/m2 , for α, β, and δ, respectively, for surface coverage ranging from 0.006 to 0.095. A deconvolution modelling approach was employed to establish their energy sites. The primary sites corresponded to maxima in the dispersive surface energy of 37.1 and 33.5; 43.3 and 39.5; and 38.6, 38.4 and 33.0; for α, β, and δ, respectively. This methodology was also extended to an α-β polymorph mixture to estimate the amount of the constituent α and β components present in the sample. The dispersive surface energies of the α-β mixture were found to be in the range of 48 to 37 mJ/m2 with 40.0, 42.4, 38.4 and 33.1 mJ/m2 sites. The deconvolution modelling method extracted the energy contribution of each of the polymorphs from data for the polymorphic mixture. The mixture was found to have a β-polymorph surface content of ∼19%. This work shows the influence of polymorphism on surface energetics and demonstrates that FD-IGC coupled with a simple modelling approach to be a powerful tool for assessing the specific nature of this energetic distribution including the quantification of polymorphic content on the surface.

KEY WORDS

D-mannitol inverse gas chromatography modelling polymorphism powder X-ray diffraction surface energy heterogeneity 

Notes

Acknowledgments

The PhD studentship, supported by the Engineering and Physical Science Research Council and Surface Measurement Systems for Robert Smith, is gratefully acknowledged.

References

  1. 1.
    Aguiar AJ, Krc J, Kinkel AW, Samyn JC. J Pharm Sci. 1967;56(7):847–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Borka L, Haleblian JK. Acta Pharm Jugosl. 1990;40:71–94.Google Scholar
  3. 3.
    Burger A, Ramberger R. Microchim Acta. 1979;72(3–4):259–71.CrossRefGoogle Scholar
  4. 4.
    Navrotsky A. Geochem Trans. 2003;4(6):34.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Li Q, Rudolph V, Weigl B, Earl A. Int J Pharm. 2004;280(1–2):77–93.CrossRefPubMedGoogle Scholar
  6. 6.
    Shah UV, Olusanmi D, Narang AS, Hussain MA, Tobyn MJ, Heng JYY. Int J Pharm. 2014;475(1–2):592–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Shah UV, Olusanmi D, Narang AS, Hussain MA, Tobyn MJ, Hinder SJ, et al. Pharm Res 2014: 1–12.Google Scholar
  8. 8.
    Das SC, Zhou Q, Morton DAV, Larson I, Stewart PJ. Eur J Pharm Sci. 2011;43(4):325–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Fichtner F, Mahlin D, Welch K, Gaisford S, Alderborn G. Pharm Res. 2008;25(12):2750–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Szekely J, Stanek V. Chem Eng Sci. 1969;24(1):11–24.CrossRefGoogle Scholar
  11. 11.
    Heng JYY, Bismarck A, Lee AF, Wilson K, Williams DR. J Pharm Sci. 2007;96(8):2134–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Heng JYY, Bismarck A, Lee AF, Wilson K, Williams DR. Langmuir. 2006;22(6):2760–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Ho R, Hinder SJ, Watts JF, Dilworth SE, Williams DR, Heng JYY. Int J Pharm. 2010;387(1–2):79–86.CrossRefPubMedGoogle Scholar
  14. 14.
    Shah UV, Olusanmi D, Narang AS, Hussain MA, Gamble JF, Tobyn MJ, et al. Int J Pharm. 2014;472(1–2):140–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Chemburkar SR, Bauer J, Deming K, Spiwek H, Patel K, Morris J, et al. Org Process Res Dev. 2000;4(5):413–7.CrossRefGoogle Scholar
  16. 16.
    Cares-Pacheco MG, Vaca-Medina G, Calvet R, Espitalier F, Letourneau JJ, Rouilly A, et al. Int J Pharm. 2014;475(1–2):69–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee AY, Erdemir D, Myerson AS. Annu Rev Chem Biomol Eng. 2011;2(1):259–80.CrossRefPubMedGoogle Scholar
  18. 18.
    Chattoraj S, Shi L, Sun CC. CrystEngComm. 2010;12(8):2466–72.CrossRefGoogle Scholar
  19. 19.
    Yoshinari T, Forbes RT, York P, Kawashima Y. Int J Pharm. 2002;247(1–2):69–77.CrossRefPubMedGoogle Scholar
  20. 20.
    Fowkes FM. Dispersion force contributions to surface and interfacial tensions, contact angles, and heats of immersion. Contact Angle, Wettability, and Adhesion. Advances in Chemistry. 43: American Chemical Society, 1964. p. 99–111.Google Scholar
  21. 21.
    Wu S. Macromol Sci C. 1974;10(1):1–73.CrossRefGoogle Scholar
  22. 22.
    Schultz J, Lavielle L, Martin C. J Adhes. 1987;23(1):45–60.CrossRefGoogle Scholar
  23. 23.
    Dorris GM, Gray DG. J Colloid Interface Sci. 1980;77(2):353–62.CrossRefGoogle Scholar
  24. 24.
    Shi B, Wang Y, Jia L. J Chromatogr A. 2011;1218(6):860–2.CrossRefPubMedGoogle Scholar
  25. 25.
    Buckton G, Gill H. Adv Drug Deliv Rev. 2007;59(14):1474–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Rudzinski W, Everett DH. Adsorption of gases on heterogeneous surfaces. London: Academic; 1992. p. 529–51.CrossRefGoogle Scholar
  27. 27.
    Harris LB. Surf Sci. 1968;10(2):129–45.CrossRefGoogle Scholar
  28. 28.
    Brunauer S, Emmett PH, Teller E. J Am Chem Soc. 1938;60(2):309–19.CrossRefGoogle Scholar
  29. 29.
    Thielmann F, Burnett DJ, Heng JYY. Drug Dev Ind Pharm. 2007;33(11):1240–53.CrossRefPubMedGoogle Scholar
  30. 30.
    Jefferson AE, Williams DR, Heng JYY. J J Adhes Sci Technol. 2011;25(4–5):339–55.CrossRefGoogle Scholar
  31. 31.
    Smith RR, Williams DR, Burnett DJ, Heng JYY. Langmuir. 2014;30(27):8029–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Aubrey-Medendorp C. Atomic force microscopy method development for surface energy analysis [Doctoral Thesis]. Lexington, KY, United States: University of Kentucky; 2011.Google Scholar
  33. 33.
    Poornachary SK, Parambil JV, Chow PS, Tan RBH, Heng JYY. Cryst Growth Des. 2013;13(3):1180–6.CrossRefGoogle Scholar
  34. 34.
    Gamble JF, Leane M, Olusanmi D, Tobyn M, Šupuk E, Khoo J, et al. Int J Pharm. 2012;422(1–2):238–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Ylä-Mäihäniemi PP, Heng JYY, Thielmann F, Williams DR. Langmuir. 2008;24(17):9551–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Stephenson GA, Forbes RA, Reutzel-Edens SM. Adv Drug Deliv Rev. 2001;48(1):67–90.CrossRefPubMedGoogle Scholar
  37. 37.
    Shah B, Kakumanu VK, Bansal AK. J Pharm Sci. 2006;95(8):1641–65.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • Robert R. Smith
    • 1
  • Umang V. Shah
    • 1
  • Jose V. Parambil
    • 1
  • Daniel J. Burnett
    • 2
  • Frank Thielmann
    • 3
  • Jerry Y. Y. Heng
    • 1
    Email author
  1. 1.Surfaces and Particle Engineering Laboratory, Department of Chemical EngineeringImperial College LondonLondonUK
  2. 2.Surface Measurement Systems Ltd.AllentownUSA
  3. 3.Novartis Pharma, Technical OperationsSteinSwitzerland

Personalised recommendations