The AAPS Journal

, Volume 19, Issue 2, pp 421–430 | Cite as

Epigenetic CpG Methylation of the Promoter and Reactivation of the Expression of GSTP1 by Astaxanthin in Human Prostate LNCaP Cells

  • Yuqing Yang
  • Francisco Fuentes
  • Limin Shu
  • Chao Wang
  • Doug Pung
  • Wenji Li
  • Chengyue Zhang
  • Yue Guo
  • Ah-Ng KongEmail author
Research Article Theme: Natural Products Drug Discovery in Cancer Prevention
Part of the following topical collections:
  1. Theme: Natural Products Drug Discovery in Cancer Prevention


Astaxanthin (AST), a red dietary carotenoid, has synergistic antioxidant effects with polyunsaturated fatty acids at low concentrations via Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or Nrf2)/antioxidant response element (ARE) signaling. In addition, chromatin remodeling and DNA methylation-based gene silencing represent a common mechanism in prostate carcinogenesis and tumor progression from normal cells to pre-initiated cells and ultimately to invasive carcinoma. Therefore, the control of epigenetic modification and the transcriptional/translational control of the activation of Nrf2 and Nrf2-target genes, including glutathione S-transferases (GSTs), appear to be an important mechanism that protects cells against injuries from oxidative stress and cancer development. In this study, we aim to investigate the role of AST in reactivating the expression of Nrf2 and GSTP1 through epigenetic modification in human prostate LNCaP cells. Treatment with AST in human LNCaP cells reduced the methylation of 21 CpG sites of the GSTP1 CpG island but did not affect the three CpG sites of the Nrf2 promoter region. AST induced the mRNA expression and protein expression of both Nrf2 and GSTP1. It also increased the mRNA expression of NQO1 in sh-mock LNCaP cells but not in sh-SETD7 LNCaP cells. Furthermore, AST reduced the protein expression of DNMT3b and significantly inhibited DNMT and HDAC activities in vitro. Taken together, these results suggest that AST decreased the methylation status of the GSTP1, and these epigenetic modifying effects may originate from the decreasing activities of epigenetic modification enzymes, contributing to the overall beneficial health effects of AST.


astaxanthin DNA methylation epigenetics GSTP1 prostate cancer 



This study was supported in part by institutional funds and by R01-CA118947 and R01-CA152826 from the National Cancer Institute (NCI), ​R01 AT009152 from the National Center for Complementary and Integrative Health (NCCIH), and R01AT007065 from the National Center for Complementary and Alternative Medicines (NCCAM) and the Office of Dietary Supplements (ODS). We thank all the members in Dr. Ah-Ng Tony Kong’s lab for their helpful discussion in the preparation of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66(4):271–89.CrossRefPubMedGoogle Scholar
  2. 2.
    Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, et al. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer Sci. 2012;103(5):913–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Jhaveri MS, Morrow CS. Methylation-mediated regulation of the glutathione S-transferase P1 gene in human breast cancer cells. Gene. 1998;210(1):1–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58(20):4515–8.PubMedGoogle Scholar
  5. 5.
    Saxena A, Dhillon VS, Shahid M, Khalil HS, Rani M, Prasad DT, et al. GSTP1 methylation and polymorphism increase the risk of breast cancer and the effects of diet and lifestyle in breast cancer patients. Exp Ther Med. 2012;4(6):1097–103.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Arai T, Miyoshi Y, Kim SJ, Taguchi T, Tamaki Y, Noguchi S. Association of GSTP1 CpG islands hypermethylation with poor prognosis in human breast cancers. Breast Cancer Res Treat. 2006;100(2):169–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Krassenstein R, Sauter E, Dulaimi E, Battagli C, Ehya H, Klein-Szanto A, et al. Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(1 Pt 1):28–32.CrossRefGoogle Scholar
  8. 8.
    Pongtheerat T, Pakdeethai S, Purisa W, Chariyalertsak S, Petmitr S. Promoter methylation and genetic polymorphism of glutathione S-transferase P1 gene (GSTP1) in Thai breast-cancer patients. Asian Pac J Cancer Prev: APJCP. 2011;12(10):2731–4.PubMedGoogle Scholar
  9. 9.
    Singal R, van Wert J, Bashambu M. Cytosine methylation represses glutathione S-transferase P1 (GSTP1) gene expression in human prostate cancer cells. Cancer Res. 2001;61(12):4820–6.PubMedGoogle Scholar
  10. 10.
    Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994;91(24):11733–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kong AN, Yu R, Lei W, Mandlekar S, Tan TH, Ucker DS. Differential activation of MAPK and ICE/Ced-3 protease in chemical-induced apoptosis. The role of oxidative stress in the regulation of mitogen-activated protein kinases (MAPKs) leading to gene expression and survival or activation of caspases leading to apoptosis. Restor Neurol Neurosci. 1998;12(2–3):63–70.PubMedGoogle Scholar
  12. 12.
    Lee JH, Khor TO, Shu L, Su ZY, Fuentes F, Kong AN. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther. 2013;137(2):153–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34(6):340–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res. 2008;1(3):187–91.CrossRefGoogle Scholar
  15. 15.
    Saw CL, Yang AY, Huang MT, Liu Y, Lee JH, Khor TO, et al. Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages. Cell Biosci. 2014;4:39.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Saw CL, Huang MT, Liu Y, Khor TO, Conney AH, Kong AN. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog. 2011;50(6):479–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006;66(16):8293–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto JM. Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett. 2006;236(1):72–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Frohlich DA, McCabe MT, Arnold RS, Day ML. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene. 2008;27(31):4353–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J Cell Biochem. 2004;91(3):540–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate. 2012;72(11):1248–61.CrossRefPubMedGoogle Scholar
  22. 22.
    Tokumaru Y, Harden SV, Sun DI, Yamashita K, Epstein JI, Sidransky D. Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(16):5518–22.CrossRefGoogle Scholar
  23. 23.
    Stewart GD, Van Neste L, Delvenne P, Delree P, Delga A, McNeill SA, et al. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 2013;189(3):1110–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Peng J, Yuan JP, Wang JH. Effect of diets supplemented with different sources of astaxanthin on the gonad of the sea urchin Anthocidaris crassispina. Nutrients. 2012;4(8):922–34.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, et al. Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal. 2003;5(1):139–44.CrossRefPubMedGoogle Scholar
  26. 26.
    Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, et al. Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb. 2000;7(4):216–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Kobayashi M. In vivo antioxidant role of astaxanthin under oxidative stress in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol. 2000;54(4):550–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Yasui Y, Hosokawa M, Mikami N, Miyashita K, Tanaka T. Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem Biol Interact. 2011;193(1):79–87.CrossRefPubMedGoogle Scholar
  29. 29.
    Nagendraprabhu P, Sudhandiran G. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Investig New Drugs. 2011;29(2):207–24.CrossRefGoogle Scholar
  30. 30.
    Jyonouchi H, Sun S, Iijima K, Gross MD. Antitumor activity of astaxanthin and its mode of action. Nutr Cancer. 2000;36(1):59–65.CrossRefPubMedGoogle Scholar
  31. 31.
    Kang JO, Kim SJ, Kim H. Effect of astaxanthin on the hepatotoxicity, lipid peroxidation and antioxidative enzymes in the liver of CCl4-treated rats. Methods Find Exp Clin Pharmacol. 2001;23(2):79–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects beta-cells against glucose toxicity in diabetic db/db mice. Redox Rep Commun Free Radic Res. 2002;7(5):290–3.CrossRefGoogle Scholar
  33. 33.
    Ohgami K, Shiratori K, Kotake S, Nishida T, Mizuki N, Yazawa K, et al. Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Invest Ophthalmol Vis Sci. 2003;44(6):2694–701.CrossRefPubMedGoogle Scholar
  34. 34.
    Yuan JP, Peng J, Yin K, Wang JH. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55(1):150–65.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee JJ, Kong M, Ayers GD, Lotan R. Interaction index and different methods for determining drug interaction in combination therapy. J Biopharm Stat. 2007;17(3):461–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Saw CL, Yang AY, Guo Y, Kong AN. Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway. Food Chem Toxicol. 2013;62:869–75.CrossRefPubMedGoogle Scholar
  37. 37.
    Li R, Wu H, Zhuo WW, Mao QF, Lan H, Zhang Y, et al. Astaxanthin normalizes epigenetic modifications of bovine somatic cell cloned embryos and decreases the generation of lipid peroxidation. Reprod Domest Anim = Zuchthygiene. 2015;50(5):793–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1):e8579.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Khor TO, Fuentes F, Shu L, Paredes-Gonzalez X, Yang AY, Liu Y, et al. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev Res. 2014;7(12):1186–97.CrossRefGoogle Scholar
  40. 40.
    Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Hun Lee J, Shu L, Fuentes F, Su ZY, Tony Kong AN. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells. J Tradit Complement Med. 2013;3(1):69–79.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci: CMLS. 2004;61(19–20):2571–87.CrossRefPubMedGoogle Scholar
  43. 43.
    Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell. 2001;8(6):1207–17.CrossRefPubMedGoogle Scholar
  44. 44.
    Esteve PO, Chin HG, Benner J, Feehery GR, Samaranayake M, Horwitz GA, et al. Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A. 2009;106(13):5076–81.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8(6):1409–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Khor TO, Yu S, Kong AN. Dietary cancer chemopreventive agents—targeting inflammation and Nrf2 signaling pathway. Planta Med. 2008;74(13):1540–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Shin JW, Ohnishi K, Murakami A, Lee JS, Kundu JK, Na HK, et al. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev Res. 2011;4(6):860–70.CrossRefGoogle Scholar
  48. 48.
    Mavis CK, Morey Kinney SR, Foster BA, Karpf AR. Expression level and DNA methylation status of glutathione-S-transferase genes in normal murine prostate and TRAMP tumors. Prostate. 2009;69(12):1312–24.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, et al. Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev Res. 2014;7(3):319–29.CrossRefGoogle Scholar
  50. 50.
    Chen Y, Inoyama D, Kong AN, Beamer LJ, Hu L. Kinetic analyses of Keap1-Nrf2 interaction and determination of the minimal Nrf2 peptide sequence required for Keap1 binding using surface plasmon resonance. Chem Biol Drug Des. 2011;78(6):1014–21.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol. 2011;82(9):1073–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Majid S, Dar AA, Ahmad AE, Hirata H, Kawakami K, Shahryari V, et al. BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer. Carcinogenesis. 2009;30(4):662–70.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rennie PS, Nelson CC. Epigenetic mechanisms for progression of prostate cancer. Cancer Metastasis Rev. 1998;17(4):401–9.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • Yuqing Yang
    • 1
    • 2
    • 3
  • Francisco Fuentes
    • 1
    • 2
  • Limin Shu
    • 1
    • 2
  • Chao Wang
    • 1
    • 2
  • Doug Pung
    • 1
    • 2
    • 3
  • Wenji Li
    • 1
    • 2
  • Chengyue Zhang
    • 1
    • 2
    • 3
  • Yue Guo
    • 1
    • 2
    • 3
  • Ah-Ng Kong
    • 1
    • 2
    • 4
    Email author
  1. 1.Center for Phytochemical Epigenome StudiesErnest Mario School of PharmacyPiscatawayUSA
  2. 2.Department of PharmaceuticsErnest Mario School of PharmacyPiscatawayUSA
  3. 3.Graduate Program in Pharmaceutical Sciences, Ernest Mario School of PharmacyRutgers UniversityPiscatawayUSA
  4. 4.Ernest Mario School of Pharmacy, Room 228Rutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations