Advertisement

The AAPS Journal

, Volume 16, Issue 4, pp 727–735 | Cite as

Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications

  • Ximena Paredes-Gonzalez
  • Francisco Fuentes
  • Zheng-Yuan Su
  • Ah-Ng Tony Kong
Research Article Theme: Natural Products Drug Discovery in Cancer Prevention

Abstract

Nrf2 is a crucial transcription factor that controls a critical anti-oxidative stress defense system and is implicated in skin homeostasis. Apigenin (API), a potent cancer chemopreventive agent, protects against skin carcinogenesis and elicits multiple molecular signaling pathways. However, the potential epigenetic effect of API in skin cancer chemoprotection is not known. In this study, bisulfite genomic DNA sequencing and methylated DNA immunoprecipitation were utilized to investigate the demethylation effect of API at 15 CpG sites in the Nrf2 promoter in mouse skin epidermal JB6 P + cells. In addition, qPCR and Western blot analyses were performed to evaluate the mRNA and protein expression of Nrf2 and the Nrf2 ARE downstream gene, NQO1. Finally, the protein expression levels of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) were evaluated using API and the DNMT/HDAC inhibitor 5-aza/ trichostatin A. Our results showed that API effectively reversed the hypermethylated status of the 15 CpG sites in the Nrf2 promoter in a dose-dependent manner. API enhanced the nuclear translocation of Nrf2 and increased the mRNA and protein expression of Nrf2 and the Nrf2 downstream target gene, NQO1. Furthermore, API reduced the expression of the DNMT1, DNMT3a, and DNMT3b epigenetic proteins as well as the expression of some HDACs (1–8). Taken together, our results showed that API can restore the silenced status of Nrf2 in skin epidermal JB6 P + cells by CpG demethylation coupled with attenuated DNMT and HDAC activity. These results may provide new therapeutic insights into the prevention of skin cancer by dietary phytochemicals.

KEY WORDS

apigenin DNMTs epigenetics HDACs JB6 P+ Nrf2 skin cancer 

Notes

Acknowledgments

We thank all the members in Dr. Ah-Ng Tony Kong’s lab for their helpful discussion and preparation of this manuscript. This work was supported by institutional funds.

Conflict of interest

No potential conflicts of interest were disclosed.

REFERENCES

  1. 1.
    Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol. 2012;166(5):1069–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Lewis KG, Weinstock MA. Trends in nonmelanoma skin cancer mortality rates in the United States, 1969 through 2000. J Invest Dermatol. 2007;127(10):2323–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: A Cancer J Clin. 2014;64(1):9–29.Google Scholar
  4. 4.
    Halliday GM, Byrne SN, Damian DL. Ultraviolet A radiation: its role in immunosuppression and carcinogenesis. Semin Cutan Med Surg. 2011;30(4):214–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol. 2005;32(3):191–205.PubMedCrossRefGoogle Scholar
  6. 6.
    Nandakumar V, Vaid M, Tollefsbol TO, Katiyar SK. Aberrant DNA hypermethylation patterns lead to transcriptional silencing of tumor suppressor genes in UVB-exposed skin and UVB-induced skin tumors of mice. Carcinogenesis. 2011;32(4):597–604.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.PubMedGoogle Scholar
  8. 8.
    Sathyanarayana UG, Moore AY, Li L, Padar A, Majmudar K, Stastny V, et al. Sun exposure related methylation in malignant and non-malignant skin lesions. Cancer Lett. 2007;245(1–2):112–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Brown VL, Harwood CA, Crook T, Cronin JG, Kelsell DP, Proby CM. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma 2004 [cited 122 5]. 1284-92]. Available from: <Go to ISI>://MEDLINE:15140233.Google Scholar
  10. 10.
    van Doorn R, Zoutman WH, Dijkman R, de Menezes RX, Commandeur S, Mulder AA, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005;23(17):3886–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee JH, Khor TO, Shu L, Su Z-Y, Fuentes F, Kong A-NT. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol Ther. 2013;137(2):153–71.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, et al. Requirement and epigenetics re-programming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer prevention research. 2014.Google Scholar
  13. 13.
    Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Kong AN. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem. 2013;329:133–62.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Yu S, Khor TO, Cheung K-L, Li W, Wu T-Y, Huang Y, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1):e8579.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hatzimichael E, Crook T. Cancer epigenetics: new therapies and new challenges. J Drug Deliv. 2013;2013:529312.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Katiyar SK, Singh T, Prasad R, Sun Q, Vaid M. Epigenetic alterations in ultraviolet radiation-induced skin carcinogenesis: interaction of bioactive dietary components on epigenetic targets. Photochem Photobiol. 2012;88(5):1066–74.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Baumann LS. Less-known botanical cosmeceuticals. Dermatol Ther. 2007;20(5):330–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol. 2007;30(1):233–45.PubMedGoogle Scholar
  19. 19.
    Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010;27(6):962–78.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Merfort I, Heilmann J, Hagedorn-Leweke U, Lippold BC. In vivo skin penetration studies of camomile flavones. Pharmazie. 1994;49(7):509–11.PubMedGoogle Scholar
  21. 21.
    Li B, Birt DF. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm Res. 1996;13(11):1710–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Li B, Pinch H, Birt DF. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res. 1996;13(10):1530–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Wei H, Tye L, Bresnick E, Birt DF. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 1990;50(3):499–502.PubMedGoogle Scholar
  24. 24.
    Birt DF, Mitchell D, Gold B, Pour P, Pinch HC. Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res. 1997;17(1A):85–91.PubMedGoogle Scholar
  25. 25.
    Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, et al. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87(4):595–600.PubMedCrossRefGoogle Scholar
  26. 26.
    Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1 Suppl):223S–8.PubMedGoogle Scholar
  27. 27.
    Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog. 2012;51(12):952–62.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Khor TO, Huang Y, Wu T-Y, Shu L, Lee J, Kong A-NT. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol. 2011;82(9):1073–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Fuentes F, Shu L, Lee JH, Su Z-Y, Lee K-R, Kong A-NT. Nrf2-target approaches in cancer chemoprevention mediated by dietary phytochemicals. In: Bode AM, Dong Z, editors. Cancer prevention: methods in pharmacology and toxicology. New York: Springer; 2014. p. 53–83.CrossRefGoogle Scholar
  30. 30.
    Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, et al. UV-induced skin damage. Toxicology. 2003;189(1–2):21–39.PubMedCrossRefGoogle Scholar
  31. 31.
    Schafer M, Dutsch S, auf dem Keller U, Werner S. Nrf2: a central regulator of UV protection in the epidermis. Cell Cycle. 2010;9(15):2917–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Xu C, Huang M-T, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006;66(16):8293–6.PubMedCrossRefGoogle Scholar
  33. 33.
    auf dem Keller U, Huber M, Beyer TA, Kumin A, Siemes C, Braun S, et al. Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing. Mol Cell Biol. 2006;26(10):3773–84.CrossRefGoogle Scholar
  34. 34.
    Schafer M, Dutsch S, auf dem Keller U, Navid F, Schwarz A, Johnson DA. Nrf2 establishes a glutathione-mediated gradient of UVB cytoprotection in the epidermis. Genes Dev. 2010;24(10):1045–58.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Lepley DM, Pelling JC. Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinog. 1997;19(2):74–82.PubMedCrossRefGoogle Scholar
  36. 36.
    McVean M, Weinberg WC, Pelling JC. A p21(waf1)-independent pathway for inhibitory phosphorylation of cyclin-dependent kinase p34(cdc2) and concomitant G(2)/M arrest by the chemopreventive flavonoid apigenin. Mol Carcinog. 2002;33(1):36–43.PubMedCrossRefGoogle Scholar
  37. 37.
    Tong X, Pelling JC. Enhancement of p53 expression in keratinocytes by the bioflavonoid apigenin is associated with RNA-binding protein HuR. Mol Carcinog. 2009;48(2):118–29.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Huang YT, Kuo ML, Liu JY, Huang SY, Lin JK. Inhibitions of protein kinase C and proto-oncogene expressions in NIH 3 T3 cells by apigenin. Eur J Cancer. 1996;32A(1):146–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol. 2007;27(1):283–96.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Van Dross RT, Hong X, Pelling JC. Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes. Mol Carcinog. 2005;44(2):83–91.PubMedCrossRefGoogle Scholar
  41. 41.
    Byun S, Park J, Lee E, Lim S, Yu JG, Lee SJ, et al. Src kinase is a direct target of apigenin against UVB-induced skin inflammation. Carcinogenesis. 2013;34(2):397–405.PubMedCrossRefGoogle Scholar
  42. 42.
    Arango D, Morohashi K, Yilmaz A, Kuramochi K, Parihar A, Brahimaj B, et al. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci U S A. 2013;110(24):E2153–62.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Lee WJ, Shim J-Y, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005;68(4):1018–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Rajnee Kanwal HS, and Sanjay Gupta. Abstract 3683: Plant flavonoid apigenin preferentially binds with GC-rich DNA sequences and inhibits DNA methylation. AACR Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; Orlando, FL: Cancer Research April 15, 2011; Volume 71, Issue 8, Supplement 1; 2011.Google Scholar
  45. 45.
    Nguyen T, Kuo C, Nicholl MB, Sim MS, Turner RR, Morton DL, et al. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics: Off J DNA Methylation Soc. 2011;6(3):388–94.CrossRefGoogle Scholar
  46. 46.
    Hadnagy A, Beaulieu R, Balicki D. Histone tail modifications and noncanonical functions of histones: perspectives in cancer epigenetics. Mol Cancer Ther. 2008;7(4):740–8.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Ximena Paredes-Gonzalez
    • 1
  • Francisco Fuentes
    • 1
  • Zheng-Yuan Su
    • 1
  • Ah-Ng Tony Kong
    • 1
  1. 1.Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations