The AAPS Journal

, Volume 16, Issue 3, pp 609–619 | Cite as

A Population Pharmacodynamic Model for Lactate Dehydrogenase and Neuron Specific Enolase to Predict Tumor Progression in Small Cell Lung Cancer Patients

  • Núria Buil-Bruna
  • José-María López-Picazo
  • Marta Moreno-Jiménez
  • Salvador Martín-Algarra
  • Benjamin Ribba
  • Iñaki F. Trocóniz
Research Article

Abstract

The development of individualized therapies poses a major challenge in oncology. Significant hurdles to overcome include better disease monitoring and early prediction of clinical outcome. Current clinical practice consists of using Response Evaluation Criteria in Solid Tumors (RECIST) to categorize response to treatment. However, the utility of RECIST is restricted due to limitations on the frequency of measurement and its categorical rather than continuous nature. We propose a population modeling framework that relates circulating biomarkers in plasma, easily obtained from patients, to tumor progression levels assessed by imaging scans (i.e., RECIST categories). We successfully applied this framework to data regarding lactate dehydrogenase (LDH) and neuron specific enolase (NSE) concentrations in patients diagnosed with small cell lung cancer (SCLC). LDH and NSE have been proposed as independent prognostic factors for SCLC. However, their prognostic and predictive value has not been demonstrated in the context of standard clinical practice. Our model incorporates an underlying latent variable (“disease level”) representing (unobserved) tumor size dynamics, which is assumed to drive biomarker production and to be influenced by exposure to treatment; these assumptions are in agreement with the known physiology of SCLC and these biomarkers. Our model predictions of unobserved disease level are strongly correlated with disease progression measured by RECIST criteria. In conclusion, the proposed framework enables prediction of treatment outcome based on circulating biomarkers and therefore can be a powerful tool to help clinicians monitor disease in SCLC.

KEY WORDS

biomarkers lung cancer mixed-effect model pharmacodynamics population model 

Supplementary material

12248_2014_9600_Fig7_ESM.jpg (60 kb)
ESM 1

(JPEG 60 kb)

12248_2014_9600_MOESM1_ESM.tif (402 kb)
High resolution image (TIFF 401 kb)
12248_2014_9600_MOESM2_ESM.docx (22 kb)
ESM 2(DOCX 22 kb)

References

  1. 1.
    Eisenhauer E, Therasse P, Bogaerts J, Schwartz L, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.PubMedCrossRefGoogle Scholar
  2. 2.
    Ratain MJ, Eckhardt SG. Phase II studies of modern drugs directed against new targets: if you are fazed, too, then resist RECIST. J Clin Oncol. 2004;22(22):4442–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Villaruz LC, Socinski MA. The clinical viewpoint: definitions, limitations of RECIST, practical considerations of measurement. Clin Cancer Res. 2013;19(10):2629–36.PubMedCrossRefGoogle Scholar
  4. 4.
    Bender B, Schindler E, Friberg L. Population pharmacokinetic pharmacodynamic modelling in oncology: a tool for predicting clinical response. Br J Clin Pharmacol. 2013;18(2):e86.Google Scholar
  5. 5.
    Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G. Mechanism-based pharmacokinetic–pharmacodynamic modeling—a new classification of biomarkers. Pharm Res. 2005;22(9):1432–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Romero E, de Mendizabal NV, Cendrós J, Peraire C, Bascompta E, Obach R, et al. Pharmacokinetic/pharmacodynamic model of the testosterone effects of triptorelin administered in sustained release formulations in patients with prostate cancer. J Pharmacol Exp Ther. 2012;342(3):788–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Kogan Y, Halevi–Tobias K, Elishmereni M, Vuk-Pavlović S, Agur Z. Reconsidering the paradigm of cancer immunotherapy by computationally aided real-time personalization. Cancer Res. 2012;72(9):2218–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Stovold R, Blackhall F, Meredith S, Hou J, Dive C, White A. Biomarkers for small cell lung cancer: neuroendocrine, epithelial and circulating tumour cells. Lung Cancer. 2012;76(3):263–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Yip D, Harper PG. Predictive and prognostic factors in small cell lung cancer: current status. Lung Cancer. 2000;28(3):173–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Wójcik E, Kulpa J, Sas-Korczyńska B, Korzeniowski S, Jakubowicz J. ProGRP and NSE in therapy monitoring in patients with small cell lung cancer. Anticancer Res. 2008;28(5B):3027–33.PubMedGoogle Scholar
  11. 11.
    Holdenrieder S, von Pawel J, Dankelmann E, Duell T, Faderl B, Markus A, et al. Nucleosomes, ProGRP, NSE, CYFRA 21–1, and CEA in monitoring first-line chemotherapy of small cell lung cancer. Clin Cancer Res. 2008;14(23):7813–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Lippert MC, Javadpour N. Lactic dehydrogenase in the monitoring and prognosis of testicular cancer. Cancer. 1981;48(10):2274–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Scartozzi M, Faloppi L, Bianconi M, Giampieri R, Maccaroni E, Bittoni A, et al. The role of LDH serum levels in predicting global outcome in HCC patients undergoing TACE: implications for clinical management. PLoS One. 2012;7(3):e32653.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zelen M. Keynote address on biostatistics and data retrieval. Cancer Chemother Rep. 1973;4(2):31–42.Google Scholar
  15. 15.
    Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics. 1990;46:673–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Bauer R. NONMEM users guide introduction to NONMEM 7.2. 0. ICON Development Solutions Ellicott City, MD 2011.Google Scholar
  17. 17.
    Lavielle M. MONOLIX (MOdèles NOn LInéaires à effets miXtes). Orsay, France: MONOLIX group; 2005.Google Scholar
  18. 18.
    Jusko WJ, Ko HC, Ebling WF. Convergence of direct and indirect pharmacodynamic response models. J Pharmacokinet Pharmacodyn. 1995;23(1):5–8.CrossRefGoogle Scholar
  19. 19.
    Jacqmin P, Snoeck E, Van Schaick E, Gieschke R, Pillai P, Steimer J, et al. Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K–PD model. J Pharmacokinet Pharmacodyn. 2007;34(1):57–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561–77.PubMedGoogle Scholar
  23. 23.
    Go RS, Adjei AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999;17(1):409–422.PubMedGoogle Scholar
  24. 24.
    Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lesko LJ, Atkinson Jr A. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies 1. Annu Rev Pharmacol Toxicol. 2001;41(1):347–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Almufti R, Wilbaux M, Oza A, Henin E, Freyer G, Tod M, et al. A critical review of the analytical approaches for circulating tumor biomarker kinetics during treatment. Ann Oncol. 2014;25(1):41–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Fizazi K, Cojean I, Pignon J, Rixe O, Gatineau M, Hadef S, et al. Normal serum neuron specific enolase (NSE) value after the first cycle of chemotherapy. Cancer. 1998;82(6):1049–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Jørgensen L, Osterlind K, Hansen H, Cooper E. The prognostic influence of serum neuron specific enolase in small cell lung cancer. Br J Cancer. 1988;58(6):805.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Jørgensen L, Osterlind K, Genolla J, Gomm S, Hernandez J, Johnson P, et al. Serum neuron-specific enolase (S-NSE) and the prognosis in small-cell lung cancer (SCLC): a combined multivariable analysis on data from nine centres. Br J Cancer. 1996;74(3):463.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lassen U, Østerlind K, Hirsch F, Bergman B, Dombernowsky P, Hansen H. Early death during chemotherapy in patients with small-cell lung cancer: derivation of a prognostic index for toxic death and progression. Br J Cancer. 1999;79(3/4):515.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Østerlind K, Andersen PK. Prognostic factors in small cell lung cancer: multivariate model based on 778 patients treated with chemotherapy with or without irradiation. Cancer Res. 1986;46(8):4189.PubMedGoogle Scholar
  32. 32.
    Osterlind K. LDH or NSE or LDH and NSE as pretreatment prognostic factors in small cell lung cancer? A commentary. Lung Cancer. 2000;30(1):51–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Pinson P, Joos G, Watripont P, Brusselle G, Pauwels R. Serum neuron-specific enolase as a tumor marker in the diagnosis and follow-up of small-cell lung cancer. Respiration. 2009;64(1):102–7.CrossRefGoogle Scholar
  34. 34.
    Quoix E, Purohit A, Faller-Beau M, Moreau L, Oster J, Pauli G. Comparative prognostic value of lactate dehydrogenase and neuron-specific enolase in small-cell lung cancer patients treated with platinum-based chemotherapy. Lung Cancer. 2000;30(2):127–34.PubMedCrossRefGoogle Scholar
  35. 35.
    You B, Tranchand B, Girard P, Falandry C, Ribba B, Chabaud S, et al. Etoposide pharmacokinetics and survival in patients with small cell lung cancer: a multicentre study. Lung Cancer. 2008;62(2):261–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Molina R, Filella X, Auge JM. ProGRP: a new biomarker for small cell lung cancer. Clin Biochem. 2004;37(7):505–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2(9):683–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Zhuang L, Scolyer RA, Murali R, McCarthy SW, Zhang XD, Thompson JF, et al. Lactate dehydrogenase 5 expression in melanoma increases with disease progression and is associated with expression of Bcl-XL and Mcl-1, but not Bcl-2 proteins. Mod Pathol. 2010;23(1):45–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B. Glycolytic enzyme inhibitors in cancer treatment. 2008.Google Scholar
  42. 42.
    Zhou W, Capello M, Fredolini C, Racanicchi L, Piemonti L, Liotta LA, et al. Proteomic analysis reveals Warburg effect and anomalous metabolism of glutamine in pancreatic cancer cells. J Proteome Res. 2011;11(2):554–63.PubMedGoogle Scholar
  43. 43.
    Giaccone G. Clinical perspectives on platinum resistance. Drugs. 2000;59(4):9–17.PubMedCrossRefGoogle Scholar
  44. 44.
    Anderlini P, Przepiorka D, Champlin R, Korbling M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood. 1996;88(8):2819–25.PubMedGoogle Scholar
  45. 45.
    Zohlnhöfer D, Ott I, Mehilli J, Schömig K, Michalk F, Ibrahim T, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction. JAMA:J Am Med Assoc. 2006;295(9):1003–10.CrossRefGoogle Scholar
  46. 46.
    Lindemann A, Herrmann F, Oster W, Haffner G, Meyenburg W, Souza LM, et al. Hematologic effects of recombinant human granulocyte colony-stimulating factor in patients with malignancy. Blood. 1989;74(8):2644–51.PubMedGoogle Scholar
  47. 47.
    Anderlini P, Przepiorka D, Seong D, Miller P, Sundberg J, Lichtiger B, et al. Clinical toxicity and laboratory effects of granulocyte‐colony‐stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures. Transfusion. 1996;36(7):590–5.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Núria Buil-Bruna
    • 1
  • José-María López-Picazo
    • 2
  • Marta Moreno-Jiménez
    • 3
  • Salvador Martín-Algarra
    • 2
  • Benjamin Ribba
    • 4
  • Iñaki F. Trocóniz
    • 1
  1. 1.Department of Pharmacy and Pharmaceutical Technology, School of PharmacyUniversity of NavarraPamplonaSpain
  2. 2.Department of Medical Oncology, Clínica Universitaria de NavarraUniversity of NavarraPamplonaSpain
  3. 3.Department of Radiation Oncology, Clínica Universitaria de NavarraUniversity of NavarraPamplonaSpain
  4. 4.InriaEcole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations