The AAPS Journal

, Volume 16, Issue 3, pp 488–498 | Cite as

A White Paper—Consensus and Recommendations of a Global Harmonization Team on Assessing the Impact of Immunogenicity on Pharmacokinetic Measurements

  • J. M. Sailstad
  • L. Amaravadi
  • A. Clements-Egan
  • B. Gorovits
  • H. A. Myler
  • R. C. Pillutla
  • S. Pursuhothama
  • M. Putman
  • M. K. Rose
  • K. Sonehara
  • L. Tang
  • J. T. Wustner
White Paper Theme: Best Practices for Bioanalytical Methods: Recommendations from the Global Bioanalysis Consortium
Part of the following topical collections:
  1. Theme: Best Practices for Bioanalytical Methods: Recommendations from the Global Bioanalysis Consortium

Abstract

The Global Bioanalysis Consortium (GBC) set up an international team to explore the impact of immunogenicity on pharmacokinetic (PK) assessments. The intent of this paper is to define the field and propose best practices when developing PK assays for biotherapeutics. We focus on the impact of anti-drug antibodies (ADA) on the performance of PK assay leading to the impact on the reported drug concentration and exposure. The manuscript describes strategies to assess whether the observed change in the drug concentration is due to the ADA impact on drug clearance rates or is a consequence of ADA interference in the bioanalytical method applied to measure drug concentration. This paper provides the bioanalytical scientist guidance for developing ADA-tolerant PK methods. It is essential that the data generated in the PK, ADA, pharmacodynamic and efficacy/toxicity evaluations are viewed together. Therefore, the extent for the investigation of the PK sensitivity to the presence of ADA should be driven by the project needs and risk based.

KEY WORDS

global bioanalysis consortium immunogenicity pharmacodynamic pharmacokinetic risk-based approach 

References

  1. 1.
    Food and Drug Administration. Guidance for industry: bioanalytical method validation. Rockville, MD: US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research. 2001.Google Scholar
  2. 2.
    European Medicines A. Guideline on bioanalytical method validation. London: Committee for Medicinal Products for Human Use (CHMP); 2011.Google Scholar
  3. 3.
    Shah VP, Midha KK, Digh S, McGilveray IJ, Skelly JP, Yacobi A, et al. Analytical methods validation: bioavailibility, bioequivalence, and pharmacokinetic studies. J Pharm Sci. 1992;81:309–12.CrossRefGoogle Scholar
  4. 4.
    Roskos LK, Schneider A, Vainshtein I, Schwickart M, Lee R, Lu H, et al. PK–PD modeling of protein drugs: implications in assay development. Bioanalysis. 2011;3(6):659–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99–110. doi:10.1208/s12248-011-9251-3.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kirshner S. Regulatory perspective on immunogenicity. National Biotechnology Conference (2012).Google Scholar
  7. 7.
    DeSilva B, Smith W, Weiner R, Kelley M, Smolec J, Lee B, et al. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res. 2003;20:1885–900.PubMedCrossRefGoogle Scholar
  8. 8.
    Smolec J, DeSilva B, Smith W, Weiner R, Kelly M, Lee B, et al. Bioanalytical method validation for macromolecules in support of pharmacokinetic studies. Pharm Res. 2005;22:1425–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Viswanathan CT, Bansal S, Booth B, DeStefano AJ, Rose MJ, Sailstad J, et al. Workshop/conference report—quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. AAPS J. 2007;9:E30–42.PubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dostalek M, Gardner I, Gurbaxani BM, Rose RH, Chetty M. Pharmacokinetics, pharmacodynamics and physiologically-based pharcokinetic modelling of monoclonal antibodies. Clin Pharmacokinet. 2013;52:83–124.PubMedCrossRefGoogle Scholar
  11. 11.
    Synagis® (palivizumab): prescribing information. Gaithersburg, (MD): MedImmune, LLC; 2012.Google Scholar
  12. 12.
    Tysabri® (Natilizumab): prescribing information. Cambridge (MA): Biogen Idec Inc.; 2012.Google Scholar
  13. 13.
    Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, et al. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharm Exp Ther. 2005;313(2):578–85.CrossRefGoogle Scholar
  14. 14.
    Johansson A, Erlandsson A, Eriksson D, Ullen A, Holm P, Sundstrom BE, et al. Idiotypic–anti-idiotypic complexes and their in vivo metabolism. Cancer. 2002;94:1306–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Iprivask® (Desirudin recombinant): prescribing information. Hunt Valley, MD): Canyon Pharmaceuticals Inc.; 2009.Google Scholar
  16. 16.
    Refludin® (Lepirudin recombinant): prescribing information. Montville, NJ: Berlex; 2004.Google Scholar
  17. 17.
    Kim MS, Lee SH, Song MY, Yoo TH, Lee BK, Kim YS. Comparative analyses of complex formation and binding sites between human tumor necrosis factor-alpha and its three antagonists elucidate their different neutralizing mechanisms. J Mol Biol. 2007;374:1374–88.PubMedCrossRefGoogle Scholar
  18. 18.
    Voice JK, Lachman PJ. Neutrophil Fc gamma and complement receptors involved in binding soluble IgG immune complexes and in specific granule release induced soluble IgG immune complexes. Eur J Immunol. 1997;27:2514–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang W, Voice J, Lachmann PJ. A systematic study of neutrophil degranulation and respiratory burst in vitro by defined immune complexes. Clin Exp Immunol. 1995;101:507–14.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Thway TM, Magana I, Bautista A, Jawa V, Gu W, Ma M. Impact of anti-drug antibodies in preclinical pharmacokinetic assessment. AAPS J. 2013;15(3):856–63.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Wang JS, Wu ST, Gokemeijer J, Fura A, Krishna M, Morin P, et al. Attribution of the discrepancy between ELISA and LC-MS/MS assay results of a PEGylated scaffold protein in post-dose monkey plasma samples due to the presence of anti-drug antibodies. Anal Bioanal Chem. 2012;402:1229–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Fabrazyme® (Agalsidase beta): prescribing information. Cambridge MA: Genzyme; 2003.Google Scholar
  23. 23.
    Alvarez HM, So OY, Hsieh S, Shinsky-Bjorde N, Ma H, Song Y, et al. Effects of PEGylation and immune complex formation on the pharmacokinetics and biodistribution of recombinant interleukin 10 in mice. Drug Metab Dispos. 2012;40(2):360–73. doi:10.1124/dmd.111.042531.PubMedCrossRefGoogle Scholar
  24. 24.
    Sandostatin® (Octreotide acetate): prescribing information. East Hanover NJ: Novartis; 2012.Google Scholar
  25. 25.
    Liebe V, Bruckmann M, Fischer KG, Haase KK, Borgrefe M, Huhle G. Biological relevance of anti-recombinant hirudin antibodies—results from in vitro and in vivo studies. Semin Thromb Hemost. 2002;28(5):483–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Benichou B, Goyal S, Sung C, Norfleet AM, O’Brien F. A restrospective analysis of the potential impact of IgG antibodies to agalsidase β on efficacy during enzyme replacement therapy for Fabry disease. Mol Genet Metab. 2009;96:4–12.PubMedCrossRefGoogle Scholar
  27. 27.
    Byetta® (Exenatide): prescribing information. San diego CA: Amylin; 2005.Google Scholar
  28. 28.
    Spriggs F, Zhong DZ, Safavi A, Jani D, Dontha N, Kant A, et al. Ligand binding assays in the 21st Century Laboratory: Platforms. AAPS J. 2012;14(1):113–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Heudi O, Barteau S, Zimmer D, Schmidt J, Lehmann BK, Bauer N, et al. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC–MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal Chem. 2008;80:4200–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M. Bioanalytical assay strategies for the development of antibody drug conjugate biotherapeutics. Bioanalysis. 2013;5(2):201–26.PubMedCrossRefGoogle Scholar
  31. 31.
    Nowatzke W, Woolf E. Best practices during bioanalytical method validation for the characterization of assay reagents and the evaluation of analyte stability in assay standards, quality controls, and study samples. AAPS J. 2007;9:E117–22.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Koren E, Smith HW, Shores E, Shankar G, Finco-Kent D, Rup B, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333:1–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Food and Drug Administration. Guidance for industry: assay development for immunogenicity testing of therapeutic proteins. Rockville, MD: US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research. 2009.Google Scholar
  34. 34.
    European Medicines Agency. Guideline on immunogenicity assessment of biotechnology-derived therapeutic proteins. London: Committee for Medicinal Products for Human Use (CHMP); 2006.Google Scholar
  35. 35.
    Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008;48:1267–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Mire-Sluis AR, Barrett YC, Devanarayan V, Koren E, Liu H, Maia M, et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J Immunol Methods. 2004;289:1–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Salami-Moosavi H, Lee J, DeSilva B, Doellgast G. Novel approaches using alkaline or acid/guanidine treatment to eliminate therapeutic antibody interference in the measurement of total target ligand. J Pharma Biomed Anal. 2010;51:1128–33.CrossRefGoogle Scholar
  38. 38.
    Smith HW, Butterfield A, Sun D. Detection of antibodies against therapeutic proteins in the presence of residual therapeutic protein using a solid-phase extraction with acid dissociation (SPEAD) sample treatment prior to ELISA. Regul Toxicol Pharmacol. 2007;49:230–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Bourdage JS, Cook CA, Farrington DL, Chain JS, Konrad RJ. An affinity capture elution (ACE) assay for detection of anti-drug antibody to monoclonal antibody therapeutics in the presence of high levels of drug. J Immunol Methods. 2007;327:10–7.PubMedCrossRefGoogle Scholar
  40. 40.
    White JT, Golob M, Sailstad J. Understanding and mitigating impact of immunogenicity on pharmacokinetic assays. Bioanalysis. 2011;3(16):1799–803.PubMedCrossRefGoogle Scholar
  41. 41.
    Neubert H, Grace C, Rumpel K, James I. Assessing immunogenicity in the presence of excess protein therapeutic using immunoprecipitation and quantitative mass spectrometry. Anal Chem. 2008;80:6907–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Lofgren JA, Dhandapani S, Pennucci JJ, Abbott CM, Mytych DT, Kaliyaperumal A, et al. Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of Panitumumab. Immunol. 2007;178(11):7467–72.CrossRefGoogle Scholar
  43. 43.
    Patton A, Mullenix MC, Swanson SJ, Koren E. An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen. J Immunol Methods. 2005;304:189–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Weeraratne D, Chen A, Pennucci JJ, Wu CY, Zhang K, Wright J, et al. Immunogenicity of panitumumab in combination chemotherapy clinical trials. BMC Clin Pharmacol. 2011;11(17):1–10.Google Scholar
  45. 45.
    Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol. 2009;49(10):1142–56.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang BB, Lum P, Chen A, Arends R, Roskos L, Smith B, et al. Pharmacokinetic and pharmacodynamic perspectives on the clinical drug development of panitumumab. Clin Pharmacokinet. 2010;49(11):729–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Perez Ruixo JJ, Ma P, Chow AT. The utility of modeling and simulation approaches to evaluate immunogenicity effect on the therapeutic protein pharmacokinetics. AAPS J. 2013;15(1):172–82.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Gibiansky L, Sutjandra L, Doshi S, Zheng J, Sohn W, Peterson MC, et al. Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin Pharmacol. 2012;51(4):247–60.CrossRefGoogle Scholar
  49. 49.
    Sutjandra L, Rodriguez RD, Doshi S, Ma M, Peterson MC, Jang GR, et al. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacol. 2011;50(12):793–807.CrossRefGoogle Scholar
  50. 50.
    Maeda T, Yamada Y, Tawara M, Yamasaki R, Yakata Y, Tsutsumi C. Successful treatment with a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) for a patient with relapsed mantle cell lymphoma who developed a human anti-chimeric antibody. Int J Hematol. 2001;74:70–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Betaseron®: prescribing information. Montville (NJ): Bayer HealthCare Pharmaceuticals Inc; 2010.Google Scholar
  52. 52.
    Avonex®: prescribing information. Cambridge (MA): Biogen Idec Inc; 2012.Google Scholar
  53. 53.
    Rebif®: prescribing information. Rockland (MA): EMD Serono Inc; 2011.Google Scholar
  54. 54.
    Pachner AP, Warth JD, Pace A, Goelz S. Effect of neutralizing antibodies on biomarker responses to interferon beta The INSIGHT study. Neurology. 2009;73:1493–500.PubMedCrossRefGoogle Scholar
  55. 55.
    Kappos L, Clanet M, Sandberg-Wollheim M, Radue EW, Hartung HP, Hohlfeld R, et al. Neutralizing antibodies and efficacy of interferon beta-1a: A 4-year controlled study. Neurology. 2005;65:40–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Bendtzen K, Geborek P, Svenson M, Larsson L, Kapetanovic MC, Saxne T. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab. Arthritis Rheum. 2006;54:3782–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Ordas I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther. 2012;91:635–46.PubMedCrossRefGoogle Scholar
  58. 58.
    Anderson P. Tumor necrosis factor inhibitors: clinical implications of their different immunogenicity profiles. Semin Arthritis Rheum. 2005;34:19–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Karmiris K, Paintaud G, Noman M, Magdaelaine-Beuzelin C, Ferrante M, Degenne D, et al. Influence of trough serum levels and immunogenicity on long-term outcome of adalimumab therapy in Crohn’s disease. Gastroenterology. 2009;137:1628–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Kuijk A, Groot M, Stapel S, Dijkmans B, Wolbink G, Tak P. Relationship between the clinical response to adalimumab treatment and serum levels of adalimumab and anti-adalimumab antibodies in patients with psoriatic arthritis. Ann Rheum Dis. 2010;69:624–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Pascual-Salcedo D, Plasencia C, Ramiro S, Nuno L, Bonilla G, Nagore D, et al. Influence of immunogenicity on the efficacy of long-term treatment with infliximab in rheumatoid arthritis. Rheumatology. 2011;50:1445–52.PubMedCrossRefGoogle Scholar
  62. 62.
    Chen X, Hickling T, Kraynov E, Kuang B, Parng C, Vicini P. A mathematical model of the effect of immunogenicity on therapeutic protein pharmacokinetics. AAPS J. 2013;15(4):1141–54.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Bonate PL, Sung C, Welch K. Conditional modeling of antibody titers using a zero-inflated poisson random effects model: application to Fabrazyme. J Pharmacokinet Pharmacodyn. 2009;36:443–59.PubMedCrossRefGoogle Scholar
  64. 64.
    Kelley M, Ahene A, Gorovits B, Kamerud J, King LE, McIntosh T, et al. Theoretical considerations and practical approaches to address the effect of anti-drug antibody (ADA) on quantification of biotherapeutics in circulation. AAPS J. 2013;15:646–58.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • J. M. Sailstad
    • 1
  • L. Amaravadi
    • 2
  • A. Clements-Egan
    • 3
  • B. Gorovits
    • 4
  • H. A. Myler
    • 5
  • R. C. Pillutla
    • 5
  • S. Pursuhothama
    • 2
  • M. Putman
    • 6
  • M. K. Rose
    • 7
  • K. Sonehara
    • 8
  • L. Tang
    • 9
  • J. T. Wustner
    • 10
  1. 1.Sailstad and Associates Inc.DurhamUSA
  2. 2.Biogen IdecCambridgeUSA
  3. 3.Janssen Research and Development (Johnson & Johnson)RadnorUSA
  4. 4.PfizerAndoverUSA
  5. 5.Bristol-Myers SquibbPrincetonUSA
  6. 6.QPSGroningenThe Netherlands
  7. 7.Dr. Reddy’s LaboratoryHyderabadIndia
  8. 8.Sumika Chemical Analysis Service LtdOsakaJapan
  9. 9.Sanofi USBridgewaterUSA
  10. 10.Morphotek, Inc.ExtonUSA

Personalised recommendations