The AAPS Journal

, Volume 16, Issue 2, pp 342–349

Simplifying Influenza Vaccination During Pandemics: Sublingual Priming and Intramuscular Boosting of Immune Responses with Heterologous Whole Inactivated Influenza Vaccine

  • Senthil Murugappan
  • Harshad P. Patil
  • Henderik W. Frijlink
  • Anke Huckriede
  • Wouter L. J. Hinrichs
Research Article

Abstract

The best approach to control the spread of influenza virus during a pandemic is vaccination. Yet, an appropriate vaccine is not available early in the pandemic since vaccine production is time consuming. For influenza strains with a high pandemic potential like H5N1, stockpiling of vaccines has been considered but is hampered by rapid antigenic drift of the virus. It has, however, been shown that immunization with a given H5N1 strain can prime the immune system for a later booster with a drifted variant. Here, we investigated whether whole inactivated virus (WIV) vaccine can be processed to tablets suitable for sublingual (s.l.) use and whether s.l. vaccine administration can prime the immune system for a later intramuscular (i.m.) boost with a heterologous vaccine. In vitro results demonstrate that freeze-drying and tableting of WIV did not affect the integrity of the viral proteins or the hemagglutinating properties of the viral particles. Immunization experiments revealed that s.l. priming with WIV (prepared from the H5N1 vaccine strain NIBRG-14) 4 weeks prior to i.m. booster immunization with the same virus strongly enhanced hemagglutination-inhibition (HI) titers against NIBRG-14 and the drifted variant NIBRG-23. Moreover, s.l. (and i.m.) immunization with NIBRG-14 also primed for a subsequent heterologous i.m. booster immunization with NIBRG-23 vaccine. In addition to HI serum antibodies, s.l. priming enhanced lung and nose IgA responses, while i.m. priming enhanced lung IgA but not nose IgA levels. Our results identify s.l. vaccination as a user-friendly method to prime for influenza-specific immune responses toward homologous and drifted variants.

KEY WORDS

bird flu H5N1 mucosal vaccine sublingual vaccine tablet whole inactivated virus 

REFERENCES

  1. 1.
    Wyman O. Influenza vaccine strategies for broad global access key findings and project methodology. 2007.Google Scholar
  2. 2.
    Jennings LC, Monto AS, Chan PKS, Szucs TD, Nicholson KG, Royal L. Stockpiling prepandemic influenza vaccines: a new cornerstone of pandemic preparedness plans. Lancet Infect Dis. 2008;8:650–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DAT, et al. Containing pandemic influenza at the source. Science. 2005;309:1083–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Luykx DM, Casteleijn MG, Jiskoot W, Westdijk J, Jongen PMJM. Physicochemical studies on the stability of influenza haemagglutinin in vaccine bulk material. Eur J Pharm Sci. 2004;23:65–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Coenen F, Tolboom JTBM, Frijlink HW. Stability of influenza sub-unit vaccine: does a couple of days outside the refrigerator matter? Vaccine. 2006;24:525–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25:6852–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang H, Feng Z, Shu Y, Yu H, Zhou L, Zu R, et al. Probable limited person-to-person transmission of highly pathogenic avian influenza A H5N1. virus in China. Lancet. 2008;371:1427–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Ungchusak K, Auewarakul P. Probable person-to-person transmission of avian influenza A H5N1. N Engl J Med. 2005;352:333–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Imai M, Herfst S, Sorrell EM, Schrauwen EJ, Linster M, De Graaf M, et al. Transmission of influenza A/H5N1 viruses in mammals. Virus Res. 2013;178:15–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Russell CA, Fonville JM, Brown AEX, Burke DF, Smith DL, James SL, et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science. 2012;336:1541–7.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012;336:1534–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Stephenson I, Nicholson KG, Hoschler K, Zambon MC, Hancock K, DeVos J, et al. Antigenically distinct MF59-adjuvanted vaccine to boost immunity to H5N1. N Engl J Med. 2008;359:1631–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Baz M, Luke CJ, Cheng X, Jin H, Subbarao K. H5N1 vaccines in humans. Virus Res. 2013;178:78–98.PubMedCrossRefGoogle Scholar
  14. 14.
    WHO. Updated unified nomenclature system for the highly pathogenic H5N1 avian influenza viruses.2011.Google Scholar
  15. 15.
    WHO. Continued evolution of highly pathogenic avian influenza A H5N1: updated nomenclature. Influenza Other Respir Viruses. 2012;6:1–5.CrossRefGoogle Scholar
  16. 16.
    WHO. Antigenic and genetic characteristics of H5N1 viruses and candidate H5N1 vaccine viruses developed for potential use as pre-pandemic vaccines 2006; 81:328–30.Google Scholar
  17. 17.
    Belshe RB, Frey SE, Graham I, Mulligan MJ, Edupuganti S, Jackson L, et al. Safety and immunogenicity of influenza A H5 subunit vaccines: effect of vaccine schedule and antigenic variant. J Infect Dis. 2011;203:666–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Garmise RJ, Staats HF, Hickey AJ. Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech. 2007;8:E81.PubMedCrossRefGoogle Scholar
  19. 19.
    Amorij J-P, Meulenaar J, Hinrichs WLJ, Stegmann T, Huckriede A, Coenen F, et al. Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine. 2007;25:6447–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Geeraedts F, Saluja V, Ter Veer W, Amorij JP, Frijlink HW, Wilschut J, et al. Preservation of the immunogenicity of dry-powder influenza H5N1 whole inactivated virus vaccine at elevated storage temperatures. AAPS J. 2010;12:215–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Audouy SAL, van der Schaaf G, Hinrichs WLJ, Frijlink HW, Wilschut J, Huckriede A. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. Vaccine. 2011;29:1–8.CrossRefGoogle Scholar
  22. 22.
    Murugappan S, Patil HP, Kanojia G, Ter Veer W, Meijerhof T, Frijlink HW, et al. Physical and immunogenic stability of spray freeze-dried influenza vaccine powder for pulmonary delivery: comparison of inulin, dextran, or a mixture of dextran and trehalose as protectants. Eur J Pharm Biopharm. 2013;85:716–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Boudreault A, Pavilanis V. Oral immunization against influenza virus. Arch Gesamte Virusforsch. 1972;38:177–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Shim B-S, Choi Y, Cheon IS, Song MK. Sublingual delivery of vaccines for the induction of mucosal immunity. Immune Netw. 2013;13:81–5.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Pedersen G, Cox R. The mucosal vaccine quandary: intranasal vs. sublingual immunization against influenza. Hum Vaccin Immunother. 2012;8:689–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Kweon M-NN. Sublingual mucosa: a new vaccination route for systemic and mucosal immunity. Cytokine 2011:10–4.Google Scholar
  27. 27.
    Pedersen GK, Ebensen T, Gjeraker IH, Svindland S, Bredholt G, Guzmán CA, et al. Evaluation of the sublingual route for administration of influenza H5N1 virosomes in combination with the bacterial second messenger c-di-GMP. PLoS One 2011;6: doi:10.1371/journal.pone.0026973.
  28. 28.
    Shim B-SS, Choi YK, Yun C-HH, Lee E-GG, Jeon YS, Park S-MM, et al. Sublingual Immunization with M2-Based Vaccine Induces Broad Protective Immunity against Influenza. PLoS One 2011;6. doi:10.1371/journal.pone.0027953.
  29. 29.
    Song JH, Nguyen HH, Cuburu N, Horimoto T, Ko SY, Park SH, et al. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc Natl Acad Sci U S A. 2008;105:1644–9.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Amorij J-P, Hinrichs WL, Frijlink HW, Wilschut JC, Huckriede A. Needle-free influenza vaccination. Lancet Infect Dis. 2010;10:699–711.PubMedCrossRefGoogle Scholar
  31. 31.
    Bensadoun A, Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976;70:241–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Rawas-Qalaji MM, Estelle F, Simons R, Simons KJ, Simons FE. Fast-disintegrating sublingual tablets: effect of epinephrine load on tablet characteristics. AAPS PharmSciTech 2006;7: doi:10.1208/pt070241.
  33. 33.
    Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987;8:93–9.CrossRefGoogle Scholar
  34. 34.
    Amorij J-P, Saluja V, Petersen AH, Hinrichs WLJ, Huckriede A, Frijlink HW. Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine. 2007;25:8707–17.PubMedCrossRefGoogle Scholar
  35. 35.
    De Jong JC, Palache AM, Beyer WEP, Rimmelzwaan GF, Boon ACM, Osterhaus ADME. Haemagglutination-inhibiting antibody to influenza virus. Dev Biol (Basel). 2003;115:63–73.Google Scholar
  36. 36.
    Hobson D, Curry RL, Beare AS, Ward-Gardner A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J Hyg Lond. 1972;70:767–77.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    FDA. Guidance for industry: clinical data needed to support the licensure of seasonal inactivated Influenza vaccines 2013.Google Scholar
  38. 38.
    Borde A, Ekman A, Holmgren J, Larsson A. Effect of protein release rates from tablet formulations on the immune response after sublingual immunization. Eur J Pharm Sci. 2012;47:695–700.PubMedCrossRefGoogle Scholar
  39. 39.
    Baz M, Luke CJ, Cheng X, Jin H, Subbarao K. H5N1 vaccines in humans. Virus Res 2013:1–21.Google Scholar
  40. 40.
    Belshe RB, Frey SE, Graham I, Mulligan MJ, Edupuganti S, Jackson LA, et al. Safety and immunogenicity of influenza A H5 subunit vaccines: effect of vaccine schedule and antigenic variant. J Infect Dis. 2011;203:666–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Wu J, Fang H-H, Chen J-T, Zhou J-C, Feng Z-J, Li C-G, et al. Immunogenicity, safety, and cross-reactivity of an inactivated, adjuvanted, prototype pandemic influenza H5N1. vaccine: a phase II, double-blind, randomized trial. Clin Infect Dis. 2009;48:1087–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Goji NA, Nolan C, Hill H, Wolff M, Noah DL, Williams TB, et al. Immune responses of healthy subjects to a single dose of intramuscular inactivated influenza A/Vietnam/1203/2004 H5N1. Vaccine after priming with an antigenic variant. J Infect Dis. 2008;198:635–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Vemula S V, Ahi YS, Swaim A-M, Katz JM, Donis R, Sambhara S, et al. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS One 2013;8: doi:10.1371/journal.pone.0062496.
  44. 44.
    Renegar KB, Small PA, Boykins LG, Wright PF. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol. 2004;173:1978–86.PubMedGoogle Scholar
  45. 45.
    Geeraedts F, Goutagny N, Hornung V, Severa M, de Haan A, Pool J, et al. Superior immunogenicity of inactivated whole virus H5N1 Influenza vaccine is primarily controlled by toll-like receptor signalling.PLoS Pathog 2008;8: doi:10.1371/journal.ppat.1000138.
  46. 46.
    Cuburu N, Kweon M-N, Song J-H, Hervouet C, Luci C, Sun J-B, et al. Sublingual immunization induces broad-based systemic and mucosal immune responses in mice. Vaccine. 2007;25:8598–610.PubMedCrossRefGoogle Scholar
  47. 47.
    Rudnic EM, Schwartz JB. Remington: the science and practice of pharmacy, oral solid dosage forms.Remington’s pharmaceutical sciences. 21st ed. Lippincott Williams & Wilkins; 2006.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Senthil Murugappan
    • 1
  • Harshad P. Patil
    • 2
  • Henderik W. Frijlink
    • 1
  • Anke Huckriede
    • 2
  • Wouter L. J. Hinrichs
    • 1
  1. 1.Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of Medical Microbiology, Molecular Virology SectionUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands

Personalised recommendations