The AAPS Journal

, Volume 15, Issue 4, pp 1168–1179 | Cite as

Effect of PEG Surface Conformation on Anticancer Activity and Blood Circulation of Nanoemulsions Loaded with Tocotrienol-Rich Fraction of Palm Oil

  • Alaadin Alayoubi
  • Saeed Alqahtani
  • Amal Kaddoumi
  • Sami Nazzal
Research Article


Tocotrienol-rich fraction of palm oil, which contains the isomers of vitamin E, was shown to possess potent anticancer activity against mammary adenocarcinoma cell lines. Its clinical use, however, is limited by poor oral bioavailability and short half-life. Previously, we developed tocotrienol-rich lipid nanoemulsions for intravenous administration. The objective of this study was to investigate the effect of surface grafted polyethylene glycol (PEG) on the properties of the nanoemulsions. PEGylation was achieved by the addition of equimolar PEG groups using poloxamer or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] (PEG2000-DSPE). The effect of PEG surface topography on the antiproliferative activity of nanoemulsions against mammary adenocarcinoma cells, their susceptibility to protein adsorption, and its effect on blood hemolysis and circulation time was investigated. Nanoemulsions PEGylated with poloxamer or PEG2000-DSPE were stable under physical stress. Poloxamer nanoemulsion, however, displayed higher uptake and potency against MCF-7 tumor cells in 2D and 3D culture and increased hemolytic effect and susceptibility to IgG adsorption, which was reflected in its rapid clearance and short circulation half-life (1.7 h). Conversely, PEGylation with PEG2000-DSPE led to a 7-fold increase in mean residence time (12.3 h) after IV injection in rats. Reduced activity in vitro and improved circulation time suggested strong shielding of plasma proteins from the droplets. Differences between the nanoemulsions were attributed to polymer imbibitions and the differences in PEG conformation and density on the surface of the droplets.

Key words

nanoemulsion PEG2000-DSPE PEGylation poloxamer tocotrienol 


  1. 1.
    Sylvester PW, Kaddoumi A, Nazzal S, El Sayed KA. The value of tocotrienols in the prevention and treatment of cancer. J Am Coll Nutr. 2010;29(3 Suppl):324S–33S.PubMedGoogle Scholar
  2. 2.
    Nesaretnam K, Meganathan P, Veerasenan SD, Selvaduray KR. Tocotrienols and breast cancer: the evidence to date. Genes Nutr. 2012;7(1):3–9. doi:10.1007/s12263-011-0224-z.PubMedCrossRefGoogle Scholar
  3. 3.
    Kannappan R, Gupta SC, Kim JH, Aggarwal BB. Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr. 2012;7(1):43–52. doi:10.1007/s12263-011-0220-3.PubMedCrossRefGoogle Scholar
  4. 4.
    Yap SP, Yuen KH, Lim AB. Influence of route of administration on the absorption and disposition of alpha-, gamma- and delta-tocotrienols in rats. J Pharm Pharmacol. 2003;55(1):53–8. doi:10.1211/002235702450.PubMedCrossRefGoogle Scholar
  5. 5.
    Sen CK, Khanna S, Roy S. Tocotrienols: vitamin E beyond tocopherols. Life Sci. 2006;78(18):2088–98. doi:10.1016/j.lfs.2005.12.001.PubMedCrossRefGoogle Scholar
  6. 6.
    Alqahtani S, Alayoubi A, Nazzal S, Sylvester P, Kaddoumi A. Nonlinear absorption kinetics of self-emulsifying drug delivery systems (SEDDS) containing tocotrienols as lipophilic molecules: in vivo and in vitro studies. AAPS J. 2013;1-12. doi:10.1208/s12248-013-9481-7.
  7. 7.
    Goppert TM, Muller RH. Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Target. 2003;11(4):225–31. doi:10.1080/10611860310001615956QPXLM2E4EJ3LJL2B.PubMedCrossRefGoogle Scholar
  8. 8.
    Le UM, Cui Z. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy. Int J Pharm. 2006;312(1–2):105–12. doi:10.1016/j.ijpharm.2006.01.002.PubMedCrossRefGoogle Scholar
  9. 9.
    Soundararajan A, Bao A, Phillips WT, Perez R, Goins BA. [186Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl Med Biol. 2009;36(5):515–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A, Iwatsuru M. Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta. 1992;1128(1):44–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Moghimi SM. Prolonging the circulation time and modifying the body distribution of intravenously injected polystyrene nanospheres by prior intravenous administration of poloxamine-908. A ‘hepatic-blockade’ event or manipulation of nanosphere surface in vivo? Biochim Biophys Acta Gen Subj. 1997;1336(1):1–6.CrossRefGoogle Scholar
  13. 13.
    Alayoubi A, Nazzal M, Sylvester PW, Nazzal S. “Vitamin E” fortified parenteral lipid emulsions: Plackett–Burman screening of primary process and composition parameters. Drug Dev Ind Pharm. 2012. doi:10.3109/03639045.2012.682223.Google Scholar
  14. 14.
    Alayoubi AY, Anderson JF, Satyanarayanajois SD, Sylvester PW, Nazzal S. Concurrent delivery of tocotrienols and simvastatin by lipid nanoemulsions potentiates their antitumor activity against human mammary adenocarcinoma cells. Eur J Pharm Sci. 2013;48(3):385–92.CrossRefGoogle Scholar
  15. 15.
    Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine. 2010;6(1):170–8. doi:10.1016/j.nano.2009.05.004S1549-9634(09)00097-5.PubMedCrossRefGoogle Scholar
  16. 16.
    Harvie P, Wong FMP, Bally MB. Use of poly(ethylene glycol)–lipid conjugates to regulate the surface attributes and transfection activity of lipid–DNA particles. J Pharm Sci. 2000;89(5):652–63. doi:10.1002/(sici)1520-6017(200005)89:5<652::aid-jps11>;2-h.PubMedCrossRefGoogle Scholar
  17. 17.
    Han J, Davis SS, Washington C. Physical properties and stability of two emulsion formulations of propofol. Int J Pharm. 2001;215(1–2):207–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Xu A, Yao M, Xu G, Ying J, Ma W, Li B, et al. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int J Nanomedicine. 2012;7:3547–54. doi:10.2147/IJN.S32188ijn-7-3547.PubMedGoogle Scholar
  19. 19.
    Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8. doi:10.1021/nl052396o.PubMedCrossRefGoogle Scholar
  20. 20.
    Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–22. doi:10.1016/j.biomaterials.2004.07.050.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano. 2010;4(12):7151–60. doi:10.1021/nn101643u.PubMedCrossRefGoogle Scholar
  22. 22.
    Jumaa M, Müller BW. Development of a novel parenteral formulation for tetrazepam using a lipid emulsion. Drug Dev Ind Pharm. 2001;27(10):1115–21. doi:10.1081/DDC-100108374.PubMedCrossRefGoogle Scholar
  23. 23.
    Bock TK, Müller BW. A novel assay to determine the hemolytic activity of drugs incorporated in colloidal carrier systems. Pharm Res. 1994;11(4):589–91. doi:10.1023/a:1018987120738.PubMedCrossRefGoogle Scholar
  24. 24.
    Jumaa M, Kleinebudde P, Müller BW. Physicochemical properties and hemolytic effect of different lipid emulsion formulations using a mixture of emulsifiers. Pharm Acta Helv. 1999;73(6):293–301. doi:10.1016/s0031-6865(99)00003-5.CrossRefGoogle Scholar
  25. 25.
    Abuasal B, Thomas S, Sylvester PW, Kaddoumi A. Development and validation of a reversed-phase HPLC method for the determination of gamma-tocotrienol in rat and human plasma. Biomed Chromatogr. 2011;25(5):621–7. doi:10.1002/bmc.1493.PubMedCrossRefGoogle Scholar
  26. 26.
    Gao K, Sun J, Liu K, Liu X, He Z. Preparation and characterization of a submicron lipid emulsion of docetaxel: submicron lipid emulsion of docetaxel. Drug Dev Ind Pharm. 2008;34(11):1227–37. doi:10.1080/03639040802005057.PubMedCrossRefGoogle Scholar
  27. 27.
    Han J, Davis SS, Papandreou C, Melia CD, Washington C. Design and evaluation of an emulsion vehicle for paclitaxel. I. Physicochemical properties and plasma stability. Pharm Res. 2004;21(9):1573–80. doi:10.1023/b:pham.0000041451.70367.21.PubMedCrossRefGoogle Scholar
  28. 28.
    Ilium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int J Pharm. 1982;12(2–3):135–46.CrossRefGoogle Scholar
  29. 29.
    Ishii F, Nagasaka Y. Interaction between erythrocytes and free phospholipids as an emulsifying agent in fat emulsions or drug carrier emulsions for intravenous injections. Colloids Surf B: Biointerfaces. 2004;37(1–2):43–7. doi:10.1016/j.colsurfb.2004.05.016.PubMedCrossRefGoogle Scholar
  30. 30.
    Bjerregaard S, Wulf-Andersen L, Stephens RW, Røge Lund L, Vermehren C, Söderberg I, et al. Sustained elevated plasma aprotinin concentration in mice following intraperitoneal injections of w/o emulsions incorporating aprotinin. J Control Release. 2001;71(1):87–98. doi:10.1016/s0168-3659(00)00370-9.PubMedCrossRefGoogle Scholar
  31. 31.
    El-Hariri LM, Marriott C, Martin GP. The mitigating effects of phosphatidylcholines on bile salt- and lysophosphatidylcholine-induced membrane damage. J Pharm Pharmacol. 1992;44(8):651–4. doi:10.1111/j.2042-7158.1992.tb05487.x.PubMedCrossRefGoogle Scholar
  32. 32.
    Forster D, Washington C, Davis SS. Toxicity of solubilized and colloidal amphotericin B formulations to human erythrocytes. J Pharm Pharmacol. 1988;40(5):325–8. doi:10.1111/j.2042-7158.1988.tb05260.x.PubMedCrossRefGoogle Scholar
  33. 33.
    Weingarten C, Santos Magalhaes NS, Baszkin A, Benita S, Seiller M. Interactions of a non-ionic ABA copolymer surfactant with phospholipid monolayers: possible relevance to emulsion stabilization. Int J Pharm. 1991;75(2–3):171–9. doi:10.1016/0378-5173(91)90191-p.CrossRefGoogle Scholar
  34. 34.
    Lechmann T, Reinhart WH. The non-ionic surfactant Poloxamer 188 (RheothRx®) increases plasma and whole blood viscosity. Clin Hemorheol Microcirc. 1998;18(1):31–6.PubMedGoogle Scholar
  35. 35.
    Barenholz Y. Doxil(R)–the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. doi:10.1016/j.jconrel.2012.03.020S0168-3659(12)00230-1.PubMedCrossRefGoogle Scholar
  36. 36.
    Goppert TM, Muller RH. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm. 2005;60(3):361–72. doi:10.1016/j.ejpb.2005.02.006.PubMedCrossRefGoogle Scholar
  37. 37.
    Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt S, Muller RH. Plasma protein adsorption patterns on surfaces of amphotericin B-containing fat emulsions. Int J Pharm. 2003;254(1):3–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Lu X, Howard MD, Mazik M, Eldridge J, Rinehart JJ, Jay M, et al. Nanoparticles containing anti-inflammatory agents as chemotherapy adjuvants: optimization and in vitro characterization. AAPS J. 2008;10(1):133–40. doi:10.1208/s12248-008-9013-z.PubMedCrossRefGoogle Scholar
  41. 41.
    Gessner A, Waicz R, Lieske A, Paulke B, Mader K, Muller RH. Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm. 2000;196(2):245–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12(10):5304–10. doi:10.1021/nl302638g.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang G, Zeng X, Li P. Nanomaterials in cancer-therapy drug delivery system. J Biomed Nanotechnol. 2013;9(5):741–50. doi:10.1166/jbn.2013.1583.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsoneva I, Iordanov I, Berger AJ, Tomov T, Nikolova B, Mudrov N, et al. Electrodelivery of drugs into cancer cells in the presence of poloxamer 188. J Biomed Biotechnol. 2010;2010:11. doi:10.1155/2010/314213.CrossRefGoogle Scholar
  45. 45.
    Alayoubi A, Kanthala S, Satyanarayanajois SD, Anderson JF, Sylvester PW, Nazzal S. Stability and in vitro antiproliferative activity of bioactive “Vitamin E” fortified parenteral lipid emulsions. Colloids Surf B: Biointerfaces. 2013;103(0):23–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang SH, Lee CW, Chiou A, Wei PK. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnology. 2010;8:33. doi:10.1186/1477-3155-8-331477-3155-8-33.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Tang L, Sun L, Bao J, Song C, Huang L, et al. A novel paclitaxel-loaded poly(ε-caprolactone)/poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. Acta Biomater. 2010;6(6):2045–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Mei L, Zhang Y, Zheng Y, Tian G, Song C, Yang D, et al. A novel docetaxel-loaded poly (epsilon-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett. 2009;4(12):1530–9. doi:10.1007/s11671-009-9431-61556-276X-4-1530.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10. doi:10.1016/j.cell.2007.08.006.PubMedCrossRefGoogle Scholar
  50. 50.
    dit Faute MA, Laurent L, Ploton D, Poupon MF, Jardillier JC, Bobichon H. Distinctive alterations of invasiveness, drug resistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin Exp Metastasis. 2002;19(2):161–8.CrossRefGoogle Scholar
  51. 51.
    Schutte M, Fox B, Baradez MO, Devonshire A, Minguez J, Bokhari M, et al. Rat primary hepatocytes show enhanced performance and sensitivity to acetaminophen during three-dimensional culture on a polystyrene scaffold designed for routine use. Assay Drug Dev Technol. 2011;9(5):475–86. doi:10.1089/adt.2011.0371.PubMedCrossRefGoogle Scholar
  52. 52.
    Knight E, Murray B, Carnachan R, Przyborski S. Alvetex(R): polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol. 2011;695:323–40. doi:10.1007/978-1-60761-984-0_20.PubMedCrossRefGoogle Scholar
  53. 53.
    Katza E, Hadlington-Boothb W, Fauvinc D, Rettenbergerb P. Incorporating the extracellular matrix: new opportunities in cancer research. Development. 2007;134(23):4177–86.CrossRefGoogle Scholar
  54. 54.
    Reinnervate. Routine assessment of cancer cell cytotoxicity in a novel three dimensional culture assay. Application note 2 2013.Google Scholar
  55. 55.
    Shirode AB, Sylvester PW. Synergistic anticancer effects of combined gamma-tocotrienol and celecoxib treatment are associated with suppression in Akt and NFkappaB signaling. Biomed Pharmacother. 2010;64(5):327–32. doi:10.1016/j.biopha.2009.09.018.PubMedCrossRefGoogle Scholar
  56. 56.
    Bachawal SV, Wali VB, Sylvester PW. Enhanced antiproliferative and apoptotic response to combined treatment of gamma-tocotrienol with erlotinib or gefitinib in mammary tumor cells. BMC Cancer. 2010;10:84. doi:10.1186/1471-2407-10-84.PubMedCrossRefGoogle Scholar
  57. 57.
    Wali VB, Sylvester PW. Synergistic antiproliferative effects of gamma-tocotrienol and statin treatment on mammary tumor cells. Lipids. 2007;42(12):1113–23. doi:10.1007/s11745-007-3102-0.PubMedCrossRefGoogle Scholar
  58. 58.
    Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18(10):412–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Woodle MC, Storm G. Long circulating liposomes: old drugs, new therapeutics. Austin: Landes; 1998.Google Scholar
  60. 60.
    Wang R, Xiao R, Zeng Z, Xu L, Wang J. Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine. 2012;7:4185–98. doi:10.2147/IJN.S34489ijn-7-4185.PubMedGoogle Scholar
  61. 61.
    Tan B, Watson RR, Preedy VR. Tocotrienols: vitamin E beyond tocopherols. Boca Raton: CRC; 2012.Google Scholar
  62. 62.
    Louguet S, Kumar AC, Guidolin N, Sigaud G, Duguet E, Lecommandoux S, et al. Control of the PEO chain conformation on nanoparticles by adsorption of PEO-block-poly(l-lysine) copolymers and its significance on colloidal stability and protein repellency. Langmuir. 2011;27(21):12891–901. doi:10.1021/la202990y.PubMedCrossRefGoogle Scholar
  63. 63.
    Dos Santos N, Allen C, Doppen AM, Anantha M, Cox KA, Gallagher RC, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta. 2007;1768(6):1367–77. doi:10.1016/j.bbamem.2006.12.013.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Alaadin Alayoubi
    • 1
  • Saeed Alqahtani
    • 1
  • Amal Kaddoumi
    • 1
  • Sami Nazzal
    • 1
  1. 1.Department of Basic Pharmaceutical Sciences, College of PharmacyUniversity of Louisiana at MonroeMonroeUSA

Personalised recommendations