Advertisement

The AAPS Journal

, Volume 15, Issue 4, pp 991–1000 | Cite as

Perspectives on the Role of Isoflavones in Prostate Cancer

  • Aamir Ahmad
  • Bernhard Biersack
  • Yiwei Li
  • Bin Bao
  • Dejuan Kong
  • Shadan Ali
  • Sanjeev Banerjee
  • Fazlul H. Sarkar
Review Article Theme: Natural Products Drug Discovery in Cancer Prevention

Abstract

Isoflavones have been investigated in detail for their role in the prevention and therapy of prostate cancer. This is primarily because of the overwhelming data connecting high dietary isoflavone intake with reduced risk of developing prostate cancer. A number of investigations have evaluated the mechanism(s) of anticancer action of isoflavones such as genistein, daidzein, biochanin A, equol, etc., in various prostate cancer models, both in vitro and in vivo. Genistein quickly jumped to the forefront of isoflavone cancer research, but the initial enthusiasm was followed by reports on its contradictory prometastatic and tumor-promoting effects. Use of soy isoflavone mixture has been advocated as an alternative, wherein daidzein can negate harmful effects of genistein. Recent research indicates a novel role of genistein and other isoflavones in the potentiation of radiation therapy, epigenetic regulation of key tumor suppressors and oncogenes, and the modulation of miRNAs, epithelial-to-mesenchymal transition, and cancer stem cells, which has renewed the interest of cancer researchers in this class of anticancer compounds. This comprehensive review article summarizes our current understanding of the role of isoflavones in prostate cancer research.

Key words

anticancer daidzein genistein isoflavone prostate cancer 

Notes

ACKNOWLEDGMENTS

Part of the work cited in this article was funded by National Cancer Institute, NIH grant 5R01CA083695 (F.H. Sarkar). Further, the authors want to mention that although this is a comprehensive overview on the subject, the journal's policy of limiting the number of cited references to 100 made it extremely challenging to cite all the relevant studies on isoflavones.

Conflict of Interest

All the authors declare no conflict of interest.

REFERENCES

  1. 1.
    Adlercreutz H. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl. 1990;201:3–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Adlercreutz H, Honjo H, Higashi A, Fotsis T, Hamalainen E, Hasegawa T, et al. Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am J Clin Nutr. 1991 Dec;54(6):1093–100.Google Scholar
  3. 3.
    Adlercreutz H, Markkanen H, Watanabe S. Plasma concentrations of phyto-oestrogens in Japanese men. Lancet. 1993 Nov 13;342(8881):1209–10.Google Scholar
  4. 4.
    Barnes S, Peterson TG, Coward L. Rationale for the use of genistein-containing soy matrices in chemoprevention trials for breast and prostate cancer. J Cell Biochem Suppl. 1995;22:181–7.Google Scholar
  5. 5.
    Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T, Wakabayashi K. Quantification of genistein and genistin in soybeans and soybean products. Food Chem Toxicol. 1996 May;34(5):457–61.Google Scholar
  6. 6.
    Messina M, Nagata C, Wu AH. Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer. 2006;55(1):1–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Messina MJ, Persky V, Setchell KD, Barnes S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994;21(2):113–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Peterson G, Barnes S. Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate. 1993;22(4):335–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Rokhlin OW, Cohen MB. Differential sensitivity of human prostatic cancer cell lines to the effects of protein kinase and phosphatase inhibitors. Cancer Lett. 1995 Nov 27;98(1):103–10.Google Scholar
  10. 10.
    Craft CS, Xu L, Romero D, Vary CP, Bergan RC. Genistein induces phenotypic reversion of endoglin deficiency in human prostate cancer cells. Mol Pharmacol. 2008 Jan;73(1):235–42.Google Scholar
  11. 11.
    Bergan R, Kyle E, Nguyen P, Trepel J, Ingui C, Neckers L. Genistein-stimulated adherence of prostate cancer cells is associated with the binding of focal adhesion kinase to beta-1-integrin. Clin Exp Metastasis. 1996 Sep;14(4):389–98.Google Scholar
  12. 12.
    Kyle E, Neckers L, Takimoto C, Curt G, Bergan R. Genistein-induced apoptosis of prostate cancer cells is preceded by a specific decrease in focal adhesion kinase activity. Mol Pharmacol. 1997 Feb;51(2):193–200.Google Scholar
  13. 13.
    Liu Y, Kyle E, Lieberman R, Crowell J, Kellof G, Bergan RC. Focal adhesion kinase (FAK) phosphorylation is not required for genistein-induced FAK-beta-1-integrin complex formation. Clin Exp Metastasis. 2000;18(3):203–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis JN, Singh B, Bhuiyan M, Sarkar FH. Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer. 1998;32(3):123–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, et al. Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog. 2000 Oct;29(2):92–102.Google Scholar
  16. 16.
    Majid S, Kikuno N, Nelles J, Noonan E, Tanaka Y, Kawamoto K, et al. Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res. 2008 Apr 15;68(8):2736–44.Google Scholar
  17. 17.
    Rao A, Coan A, Welsh JE, Barclay WW, Koumenis C, Cramer SD. Vitamin D receptor and p21/WAF1 are targets of genistein and 1,25-dihydroxyvitamin D3 in human prostate cancer cells. Cancer Res. 2004 Mar 15;64(6):2143–7.Google Scholar
  18. 18.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006 May 25;441(7092):431–6.Google Scholar
  19. 19.
    Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009 Jan;8(1):33–40.Google Scholar
  20. 20.
    Davis JN, Kucuk O, Sarkar FH. Genistein inhibits NF-kappa B activation in prostate cancer cells. Nutr Cancer. 1999;35(2):167–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y, Sarkar FH. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res. 2002 Jul;8(7):2369–77.Google Scholar
  22. 22.
    Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 2005 Aug 1;65(15):6934–42.Google Scholar
  23. 23.
    Davis JN, Muqim N, Bhuiyan M, Kucuk O, Pienta KJ, Sarkar FH. Inhibition of prostate specific antigen expression by genistein in prostate cancer cells. Int J Oncol. 2000 Jun;16(6):1091–7.Google Scholar
  24. 24.
    Davis JN, Kucuk O, Sarkar FH. Expression of prostate-specific antigen is transcriptionally regulated by genistein in prostate cancer cells. Mol Carcinog. 2002 Jun;34(2):91–101.Google Scholar
  25. 25.
    Urban D, Irwin W, Kirk M, Markiewicz MA, Myers R, Smith M, et al. The effect of isolated soy protein on plasma biomarkers in elderly men with elevated serum prostate specific antigen. J Urol. 2001 Jan;165(1):294–300.Google Scholar
  26. 26.
    Peternac D, Klima I, Cecchini MG, Schwaninger R, Studer UE, Thalmann GN. Agents used for chemoprevention of prostate cancer may influence PSA secretion independently of cell growth in the LNCaP model of human prostate cancer progression. Prostate. 2008 Sep 1;68(12):1307–18.Google Scholar
  27. 27.
    Geller J, Sionit L, Partido C, Li L, Tan X, Youngkin T, et al. Genistein inhibits the growth of human-patient BPH and prostate cancer in histoculture. Prostate. 1998 Feb 1;34(2):75–9.Google Scholar
  28. 28.
    Li Y, Wang Z, Kong D, Li R, Sarkar SH, Sarkar FH. Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem. 2008 Oct 10;283(41):27707–16.Google Scholar
  29. 29.
    Santibanez JF, Navarro A, Martinez J. Genistein inhibits proliferation and in vitro invasive potential of human prostatic cancer cell lines. Anticancer Res. 1997 Mar;17(2A):1199–204.Google Scholar
  30. 30.
    Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008 Apr;34(2):122–36.Google Scholar
  31. 31.
    Skogseth H, Follestad T, Larsson E, Halgunset J. Transcription levels of invasion-related genes in prostate cancer cells are modified by inhibitors of tyrosine kinase. APMIS. 2006 May;114(5):364–71.Google Scholar
  32. 32.
    Xu L, Bergan RC. Genistein inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor beta-mediated activation of mitogen-activated protein kinase-activated protein kinase 2-27-kDa heat shock protein pathway. Mol Pharmacol. 2006 Sep;70(3):869–77.Google Scholar
  33. 33.
    Huang X, Chen S, Xu L, Liu Y, Deb DK, Platanias LC, et al. Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Res. 2005 Apr 15;65(8):3470–8.Google Scholar
  34. 34.
    Li Y, Sarkar FH. Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett. 2002 Dec 5;186(2):157–64.Google Scholar
  35. 35.
    Li Y, Sarkar FH. Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr. 2002 Dec;132(12):3623–31.Google Scholar
  36. 36.
    Takahashi Y, Lavigne JA, Hursting SD, Chandramouli GV, Perkins SN, Barrett JC, et al. Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: identification of novel targets. Mol Carcinog. 2004 Oct;41(2):108–19.Google Scholar
  37. 37.
    Xu L, Ding Y, Catalona WJ, Yang XJ, Anderson WF, Jovanovic B, et al. MEK4 function, genistein treatment, and invasion of human prostate cancer cells. J Natl Cancer Inst. 2009 Aug 19;101(16):1141–55.Google Scholar
  38. 38.
    Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I, et al. Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res. 2008 Mar 15;68(6):2024–32.Google Scholar
  39. 39.
    Zhang LL, Li L, Wu DP, Fan JH, Li X, Wu KJ, et al. A novel anti-cancer effect of genistein: reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacol Sin. 2008 Sep;29(9):1060–8.Google Scholar
  40. 40.
    Lee J, Ju J, Park S, Hong SJ, Yoon S. Inhibition of IGF-1 signaling by genistein: modulation of E-cadherin expression and downregulation of beta-catenin signaling in hormone refractory PC-3 prostate cancer cells. Nutr Cancer. 2012;64(1):153–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Ajdzanovic V, Mojic M, Maksimovic-Ivanic D, Bulatovic M, Mijatovic S, Milosevic V, et al. Membrane fluidity, invasiveness and dynamic phenotype of metastatic prostate cancer cells after treatment with soy isoflavones. J Membr Biol. 2013;246:307–14.PubMedCrossRefGoogle Scholar
  42. 42.
    Sierens J, Hartley JA, Campbell MJ, Leathem AJ, Woodside JV. Effect of phytoestrogen and antioxidant supplementation on oxidative DNA damage assessed using the comet assay. Mutat Res. 2001 Mar 7;485(2):169–76.Google Scholar
  43. 43.
    Raschke M, Rowland IR, Magee PJ, Pool-Zobel BL. Genistein protects prostate cells against hydrogen peroxide-induced DNA damage and induces expression of genes involved in the defence against oxidative stress. Carcinogenesis. 2006 Nov;27(11):2322–30.Google Scholar
  44. 44.
    Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life. 2000 Sep;50(3):167–71.Google Scholar
  45. 45.
    Ullah MF, Shamim U, Hanif S, Azmi AS, Hadi SM. Cellular DNA breakage by soy isoflavone genistein and its methylated structural analogue biochanin A. Mol Nutr Food Res. 2009 Nov;53(11):1376–85.Google Scholar
  46. 46.
    Ullah MF, Ahmad A, Zubair H, Khan HY, Wang Z, Sarkar FH, et al. Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species. Mol Nutr Food Res. 2011 Apr;55(4):553–9.Google Scholar
  47. 47.
    Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal. 2010 Dec 1;13(11):1679–98.Google Scholar
  48. 48.
    Barve A, Khor TO, Nair S, Lin W, Yu S, Jain MR, et al. Pharmacogenomic profile of soy isoflavone concentrate in the prostate of Nrf2 deficient and wild-type mice. J Pharm Sci. 2008 Oct;97(10):4528–45.Google Scholar
  49. 49.
    Giri AK, Lu LJ. Genetic damage and the inhibition of 7,12-dimethylbenz[a]anthracene-induced genetic damage by the phytoestrogens, genistein and daidzein, in female ICR mice. Cancer Lett. 1995 Aug 16;95(1–2):125–33.Google Scholar
  50. 50.
    Pollard M, Luckert PH. Influence of isoflavones in soy protein isolates on development of induced prostate-related cancers in L-W rats. Nutr Cancer. 1997;28(1):41–5.Google Scholar
  51. 51.
    Fritz WA, Wang J, Eltoum IE, Lamartiniere CA. Dietary genistein down-regulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol. 2002 Jan 15;186(1):89–99.Google Scholar
  52. 52.
    Mentor-Marcel R, Lamartiniere CA, Eltoum IE, Greenberg NM, Elgavish A. Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res. 2001 Sep 15;61(18):6777–82.Google Scholar
  53. 53.
    Wang J, Eltoum IE, Lamartiniere CA. Genistein alters growth factor signaling in transgenic prostate model (TRAMP). Mol Cell Endocrinol. 2004 Apr 30;219(1–2):171–80.Google Scholar
  54. 54.
    Mentor-Marcel R, Lamartiniere CA, Eltoum IA, Greenberg NM, Elgavish A. Dietary genistein improves survival and reduces expression of osteopontin in the prostate of transgenic mice with prostatic adenocarcinoma (TRAMP). J Nutr. 2005 May;135(5):989–95.Google Scholar
  55. 55.
    Naik HR, Lehr JE, Pienta KJ. An in vitro and in vivo study of antitumor effects of genistein on hormone refractory prostate cancer. Anticancer Res. 1994 Nov;14(6B):2617–9.Google Scholar
  56. 56.
    Cohen LA, Zhao Z, Pittman B, Scimeca J. Effect of soy protein isolate and conjugated linoleic acid on the growth of Dunning R-3327-AT-1 rat prostate tumors. Prostate. 2003 Feb 15;54(3):169–80.Google Scholar
  57. 57.
    Zhang L, Li L, Jiao M, Wu D, Wu K, Li X, et al. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett. 2012 Oct 1;323(1):48–57.Google Scholar
  58. 58.
    Li Y, Che M, Bhagat S, Ellis KL, Kucuk O, Doerge DR, et al. Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genistein. Neoplasia. 2004 Jul;6(4):354–63.Google Scholar
  59. 59.
    Li Y, Kucuk O, Hussain M, Abrams J, Cher ML, Sarkar FH. Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res. 2006 May 1;66(9):4816–25.Google Scholar
  60. 60.
    Hillman GG, Forman JD, Kucuk O, Yudelev M, Maughan RL, Rubio J, et al. Genistein potentiates the radiation effect on prostate carcinoma cells. Clin Cancer Res. 2001 Feb;7(2):382–90.Google Scholar
  61. 61.
    Hillman GG, Wang Y, Kucuk O, Che M, Doerge DR, Yudelev M, et al. Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol Cancer Ther. 2004 Oct;3(10):1271–9.Google Scholar
  62. 62.
    Yan SX, Ejima Y, Sasaki R, Zheng SS, Demizu Y, Soejima T, et al. Combination of genistein with ionizing radiation on androgen-independent prostate cancer cells. Asian J Androl. 2004 Dec;6(4):285–90.Google Scholar
  63. 63.
    Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG. Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer. 2006;6:107.PubMedCrossRefGoogle Scholar
  64. 64.
    Hillman GG, Singh-Gupta V. Soy isoflavones sensitize cancer cells to radiotherapy. Free Radic Biol Med. 2011 Jul 15;51(2):289–98.Google Scholar
  65. 65.
    Wang Y, Raffoul JJ, Che M, Doerge DR, Joiner MC, Kucuk O, et al. Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model. Radiat Res. 2006 Jul;166(1 Pt 1):73–80.Google Scholar
  66. 66.
    Raffoul JJ, Banerjee S, Che M, Knoll ZE, Doerge DR, Abrams J, et al. Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. Int J Cancer. 2007 Jun 1;120(11):2491–8.Google Scholar
  67. 67.
    Raffoul JJ, Sarkar FH, Hillman GG. Radiosensitization of prostate cancer by soy isoflavones. Curr Cancer Drug Targets. 2007 Dec;7(8):759–65.Google Scholar
  68. 68.
    Raffoul JJ, Banerjee S, Singh-Gupta V, Knoll ZE, Fite A, Zhang H, et al. Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res. 2007 Mar 1;67(5):2141–9.Google Scholar
  69. 69.
    Singh-Gupta V, Zhang H, Banerjee S, Kong D, Raffoul JJ, Sarkar FH, et al. Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer. 2009 Apr 1;124(7):1675–84.Google Scholar
  70. 70.
    Singh-Gupta V, Zhang H, Yunker CK, Ahmad Z, Zwier D, Sarkar FH, et al. Daidzein effect on hormone refractory prostate cancer in vitro and in vivo compared to genistein and soy extract: potentiation of radiotherapy. Pharm Res. 2010 Jun;27(6):1115–27.Google Scholar
  71. 71.
    Davis JN, Kucuk O, Djuric Z, Sarkar FH. Soy isoflavone supplementation in healthy men prevents NF-kappa B activation by TNF-alpha in blood lymphocytes. Free Radic Biol Med. 2001 Jun 1;30(11):1293–302.Google Scholar
  72. 72.
    Miltyk W, Craciunescu CN, Fischer L, Jeffcoat RA, Koch MA, Lopaczynski W, et al. Lack of significant genotoxicity of purified soy isoflavones (genistein, daidzein, and glycitein) in 20 patients with prostate cancer. Am J Clin Nutr. 2003 Apr;77(4):875–82.Google Scholar
  73. 73.
    Gardner CD, Oelrich B, Liu JP, Feldman D, Franke AA, Brooks JD. Prostatic soy isoflavone concentrations exceed serum levels after dietary supplementation. Prostate. 2009 May 15;69(7):719–26.Google Scholar
  74. 74.
    Takimoto CH, Glover K, Huang X, Hayes SA, Gallot L, Quinn M, et al. Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev. 2003 Nov;12(11 Pt 1):1213–21.Google Scholar
  75. 75.
    Hamilton-Reeves JM, Rebello SA, Thomas W, Kurzer MS, Slaton JW. Effects of soy protein isolate consumption on prostate cancer biomarkers in men with HGPIN, ASAP, and low-grade prostate cancer. Nutr Cancer. 2008;60(1):7–13.PubMedCrossRefGoogle Scholar
  76. 76.
    Miyanaga N, Akaza H, Hinotsu S, Fujioka T, Naito S, Namiki M, et al. Prostate cancer chemoprevention study: an investigative randomized control study using purified isoflavones in men with rising prostate-specific antigen. Cancer Sci. 2012 Jan;103(1):125–30.Google Scholar
  77. 77.
    deVere White RW, Hackman RM, Soares SE, Beckett LA, Li Y, Sun B. Effects of a genistein-rich extract on PSA levels in men with a history of prostate cancer. Urology. 2004;63(2):259–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Adams KF, Chen C, Newton KM, Potter JD, Lampe JW. Soy isoflavones do not modulate prostate-specific antigen concentrations in older men in a randomized controlled trial. Cancer Epidemiol Biomarkers Prev. 2004 Apr;13(4):644–8.Google Scholar
  79. 79.
    DeVere White RW, Tsodikov A, Stapp EC, Soares SE, Fujii H, Hackman RM. Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer. Nutr Cancer. 2010;62(8):1036–43.PubMedCrossRefGoogle Scholar
  80. 80.
    Kumar NB, Cantor A, Allen K, Riccardi D, Besterman-Dahan K, Seigne J, et al. The specific role of isoflavones in reducing prostate cancer risk. Prostate. 2004 May 1;59(2):141–7.Google Scholar
  81. 81.
    Schroder FH, Roobol MJ, Boeve ER, De MR, Zuijdgeest-van Leeuwen SD, Kersten I, et al. Randomized, double-blind, placebo-controlled crossover study in men with prostate cancer and rising PSA: effectiveness of a dietary supplement. Eur Urol. 2005;48(6):922–30.Google Scholar
  82. 82.
    Maskarinec G, Morimoto Y, Hebshi S, Sharma S, Franke AA, Stanczyk FZ. Serum prostate-specific antigen but not testosterone levels decrease in a randomized soy intervention among men. Eur J Clin Nutr. 2006 Dec;60(12):1423–9.Google Scholar
  83. 83.
    Pendleton JM, Tan WW, Anai S, Chang M, Hou W, Shiverick KT, et al. Phase II trial of isoflavone in prostate-specific antigen recurrent prostate cancer after previous local therapy. BMC Cancer. 2008;8:132.PubMedCrossRefGoogle Scholar
  84. 84.
    Lazarevic B, Boezelijn G, Diep LM, Kvernrod K, Ogren O, Ramberg H, et al. Efficacy and safety of short-term genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind phase 2 clinical trial. Nutr Cancer. 2011;63(6):889–98.PubMedCrossRefGoogle Scholar
  85. 85.
    Ahmad IU, Forman JD, Sarkar FH, Hillman GG, Heath E, Vaishampayan U, et al. Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutr Cancer. 2010;62(7):996–1000.PubMedCrossRefGoogle Scholar
  86. 86.
    Molinie B, Georgel P. Genetic and epigenetic regulations of prostate cancer by genistein. Drug News Perspect. 2009 Jun;22(5):247–54.Google Scholar
  87. 87.
    Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005 Oct 1;11(19 Pt 1):7033–41.Google Scholar
  88. 88.
    Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer. 2008 Aug 1;123(3):552–60.Google Scholar
  89. 89.
    Phillip CJ, Giardina CK, Bilir B, Cutler DJ, Lai YH, Kucuk O, et al. Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells. BMC Cancer. 2012;12:145.PubMedCrossRefGoogle Scholar
  90. 90.
    Basak S, Pookot D, Noonan EJ, Dahiya R. Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther. 2008;7(10):3195–202.PubMedCrossRefGoogle Scholar
  91. 91.
    Majid S, Dar AA, Shahryari V, Hirata H, Ahmad A, Saini S, et al. Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-cell translocation gene 3 in prostate cancer. Cancer. 2010 Jan 1;116(1):66–76.Google Scholar
  92. 92.
    Vardi A, Bosviel R, Rabiau N, Adjakly M, Satih S, Dechelotte P, et al. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo. 2010 Jul;24(4):393–400.Google Scholar
  93. 93.
    Adjakly M, Bosviel R, Rabiau N, Boiteux JP, Bignon YJ, Guy L, et al. DNA methylation and soy phytoestrogens: quantitative study in DU-145 and PC-3 human prostate cancer cell lines. Epigenomics. 2011 Dec;3(6):795–803.Google Scholar
  94. 94.
    Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, et al. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila). 2011 Jan;4(1):76–86.Google Scholar
  95. 95.
    Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Targeting bone remodeling by isoflavone and 3,3′-diindolylmethane in the context of prostate cancer bone metastasis. PLoS One. 2012;7(3):e33011.PubMedCrossRefGoogle Scholar
  96. 96.
    Chiyomaru T, Yamamura S, Zaman MS, Majid S, Deng G, Shahryari V, et al. Genistein suppresses prostate cancer growth through inhibition of oncogenic microRNA-151. PLoS One. 2012;7(8):e43812.PubMedCrossRefGoogle Scholar
  97. 97.
    Rabiau N, Trraf HK, Adjakly M, Bosviel R, Guy L, Fontana L, et al. miRNAs differentially expressed in prostate cancer cell lines after soy treatment. In Vivo. 2011;25(6):917–21.PubMedGoogle Scholar
  98. 98.
    Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics. 2012 Aug;7(8):940–9.Google Scholar
  99. 99.
    Andres S, Abraham K, Appel KE, Lampen A. Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol. 2011 Jul;41(6):463–506.Google Scholar
  100. 100.
    Sarkar FH, Adsule S, Padhye S, Kulkarni S, Li Y. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev Med Chem. 2006 Apr;6(4):401–7.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Aamir Ahmad
    • 1
  • Bernhard Biersack
    • 2
  • Yiwei Li
    • 1
  • Bin Bao
    • 1
  • Dejuan Kong
    • 1
  • Shadan Ali
    • 3
  • Sanjeev Banerjee
    • 1
  • Fazlul H. Sarkar
    • 1
    • 3
  1. 1.Department of Pathology, Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA
  2. 2.Organic Chemistry LaboratoryUniversity BayreuthBayreuthGermany
  3. 3.Department of Oncology, Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA

Personalised recommendations