The AAPS Journal

, Volume 15, Issue 4, pp 941–950

Emerging Applications of Metabolomics in Studying Chemopreventive Phytochemicals

Review Article Theme: Natural Products Drug Discovery in Cancer Prevention

Abstract

Phytochemicals from diet and herbal medicines are under intensive investigation for their potential use as chemopreventive agents to block and suppress carcinogenesis. Chemical diversity of phytochemicals, together with complex metabolic interactions between phytochemicals and biological system, can overwhelm the capacity of traditional analytical platforms, and thus pose major challenges in studying chemopreventive phytochemicals. Recent progresses in metabolomics have transformed it to become a robust systems biology tool, suitable for examining both chemical and biochemical events that contribute to the cancer prevention activities of plant preparations or their bioactive components. This review aims to discuss the technical platform of metabolomics and its existing and potential applications in chemoprevention research, including identifying bioactive phytochemicals in plant extracts, monitoring phytochemical exposure in humans, elucidating biotransformation pathways of phytochemicals, and characterizing the effects of phytochemicals on endogenous metabolism and cancer metabolism.

KEY WORDS

chemoprevention metabolism metabolomics phytochemical 

REFERENCES

  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    Umar A, Dunn BK, Greenwald P. Future directions in cancer prevention. Nat Rev Cancer. 2012;12:835–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Wattenberg LW. Chemoprophylaxis of carcinogenesis: a review. Cancer Res. 1966;26:1520–6.PubMedGoogle Scholar
  4. 4.
    Wattenberg LW. Effects of dietary constituents on the metabolism of chemical carcinogens. Cancer Res. 1975;35:3326–31.PubMedGoogle Scholar
  5. 5.
    Collett NP, Amin ARMR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37:258–81.CrossRefGoogle Scholar
  6. 6.
    Steinmetz KA, Potter JD. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996;96:1027–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: a global perspective. Pharmacol Ther. 2003;99:1–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Benetou V, Orfanos P, Lagiou P, Trichopoulos D, Boffetta P, Trichopoulou A. Vegetables and fruits in relation to cancer risk: evidence from the Greek epic cohort study. Cancer Epidemiol Biomarkers Prev. 2008;17:387–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Freedman ND, Park Y, Subar AF, Hollenbeck AR, Leitzmann MF, Schatzkin A, et al. Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study. Int J Cancer. 2008;122:2330–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Wachtel-Galor S, Benzie IFF. (2011) Herbal medicine: An introduction to its history, usage, regulation, current trends, and research needs. in Herbal medicine: Biomolecular and clinical aspects (Benzie, I. F. F., and Wachtel-Galor, S. eds.), 2nd Ed., Boca Raton (FL). ppGoogle Scholar
  11. 11.
    Glade MJ. Food, nutrition, and the prevention of cancer: a global perspective. American institute for cancer research/world cancer research fund, American Institute for Cancer Research, 1997. Nutrition. 1999;15:523–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen C, Kong ANT. Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci. 2005;26:318–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang CS, Wang X, Lu G, Picinich SC. Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer. 2009;9:429–39.PubMedCrossRefGoogle Scholar
  14. 14.
    Ahmad A, Sakr WA, Rahman KM. Anticancer properties of indole compounds: mechanism of apoptosis induction and role in chemotherapy. Curr Drug Targets. 2010;11:652–66.Google Scholar
  15. 15.
    Urich-Merzenich G, Zeitler H, Jobst D, Panek D, Vetter H, Wagner H. Application of the “-omic-” technologies in phytomedicine. Phytomedicine. 2007;14:70–82.CrossRefGoogle Scholar
  16. 16.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. Hmdb 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41:D801–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003;62:817–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4:551–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Di Leo A, Claudino W, Colangiuli D, Bessi S, Pestrin M, Biganzoli L. New strategies to identify molecular markers predicting chemotherapy activity and toxicity in breast cancer. Ann Oncol. 2007;18 Suppl 12:xii8–xii14.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhara T. Noninvasive human metabolome analysis for differential diagnosis of inborn errors of metabolism. J Chromatogr B Anal Technol Biomed Life Sci. 2007;855:42–50.CrossRefGoogle Scholar
  21. 21.
    Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 2004;9:418–25.PubMedCrossRefGoogle Scholar
  23. 23.
    Ryan D, Robards K. Metabolomics: the greatest omics of them all? Anal Chem. 2006;78:7954–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst. 2005;130:606–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Kersten RD, Dorrestein PC. Secondary metabolomics: natural products mass spectrometry goes global. ACS Chem Biol. 2009;4:599–601.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev. 2007;39:581–97.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen C, Kim S. LC-MS-based metabolomics of xenobiotic-induced toxicities. Comput Struct Biotechnol J. 2013;4:e20130108.Google Scholar
  28. 28.
    Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24:613–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol Biosyst. 2012;8:470–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot. 2005;56:219–43.PubMedCrossRefGoogle Scholar
  32. 32.
    Santa T. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed Chromatogr. 2011;25:1–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Jia S, Kang YP, Park JH, Lee J, Kwon SW. Simultaneous determination of 23 amino acids and 7 biogenic amines in fermented food samples by liquid chromatography/quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2011;1218:9174–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Xu F, Zou L, Liu Y, Zhang Z, Ong CN. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom Rev. 2011;30:1143–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Gao S, Zhang ZP, Karnes HT. Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. J Chromatogr B Anal Technol Biomed Life Sci. 2005;825:98–110.CrossRefGoogle Scholar
  36. 36.
    Gamache PH, Meyer DF, Granger MC, Acworth IN. Metabolomic applications of electrochemistry/mass spectrometry. J Am Soc Mass Spectrom. 2004;15:1717–26.PubMedCrossRefGoogle Scholar
  37. 37.
    Schattka B, Alexander M, Ying SL, Man A, Shaw RA. Metabolic fingerprinting of biofluids by infrared spectroscopy: modeling and optimization of flow rates for laminar fluid diffusion interface sample preconditioning. Anal Chem. 2011;83:555–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Wolfender JL, Queiroz EF, Hostettmann K. Phytochemistry in the microgram domain—a LC-NMR perspective. Magn Reson Chem. 2005;43:697–709.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang X, Sun H, Zhang A, Wang P, Han Y. Ultra-performance liquid chromatography coupled to mass spectrometry as a sensitive and powerful technology for metabolomic studies. J Sep Sci. 2011;34:3451–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom. 2004;39:845–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Hu QZ, Noll RJ, Li HY, Makarov A, Hardman M, Cooks RG. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Allwood JW, Parker D, Beckmann M, Draper J, Goodacre R. Fourier transform ion cyclotron resonance mass spectrometry for plant metabolite profiling and metabolite identification. Methods Mol Biol. 2012;860:157–76.PubMedCrossRefGoogle Scholar
  43. 43.
    Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom. 2001;36:849–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Smolinska A, Blanchet L, Buydens LM, Wijmenga SS. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta. 2012;750:82–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A. 2007;1158:318–28.PubMedCrossRefGoogle Scholar
  46. 46.
    Sysi-Aho M, Katajamaa M, Yetukuri L, and Oresic M. Normalization method for metabolomics data using optimal selection of multiple internal standards. Bmc Bioinformatics. 2007;8.Google Scholar
  47. 47.
    Schlotterbeck G, Ross A, Dieterle F, Senn H. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics. 2006;7:1055–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res. 2007;6:469–79.PubMedCrossRefGoogle Scholar
  49. 49.
    Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, et al. Metabolite annotations based on the integration of mass spectral information. Plant J. 2008;54:949–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinforma. 2006;7:234.CrossRefGoogle Scholar
  51. 51.
    Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Gibbs JB. Mechanism-based target identification and drug discovery in cancer research. Science. 2000;287:1969–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Holbeck SL. Update on NCI in vitro drug screen utilities. Eur J Cancer. 2004;40:785–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Kinghorn AD, Farnsworth NR, Soejarto DD, Cordell GA, Swanson SM, Pezzuto JM, et al. Novel strategies for the discovery of plant-derived anticancer agents. Pharm Biol. 2003;41:53–67.CrossRefGoogle Scholar
  55. 55.
    Damia G, D'Incalci M. Contemporary pre-clinical development of anticancer agents—what are the optimal preclinical models? Eur J Cancer. 2009;45:2768–81.PubMedCrossRefGoogle Scholar
  56. 56.
    Rochfort S. Metabolomics reviewed: a new “Omics” platform technology for systems biology and implications for natural products research. J Nat Prod. 2005;68:1813–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Wold S, Sjostrom M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.CrossRefGoogle Scholar
  58. 58.
    Yuliana ND, Khatib A, Choi YH, Verpoorte R. Metabolomics for bioactivity assessment of natural products. Phytother Res. 2011;25:157–69.Google Scholar
  59. 59.
    Yuliana ND, Khatib A, Verpoorte R, Choi YH. Comprehensive extraction method integrated with NMR metabolomics: a new bioactivity screening method for plants, adenosine a1 receptor binding compounds in Orthosiphon stamineus Benth. Anal Chem. 2011;83:6902–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Wolfender JL, Queiroz EF. New approaches for studying the chemical diversity of natural resources and the bioactivity of their constituents. Chimia (Aarau). 2012;66:324–9.CrossRefGoogle Scholar
  61. 61.
    Cardoso-Taketa AT, Pereda-Miranda R, Choi YH, Verpoorte R, Villarreal ML. Metabolic profiling of the mexican anxiolytic and sedative plant Golphimia glauca using nuclear magnetic resonance spectroscopy and multivariate data analysis. Planta Med. 2008;74:1295–301.PubMedCrossRefGoogle Scholar
  62. 62.
    Brunelle JK, Zhang B. Apoptosis assays for quantifying the bioactivity of anticancer drug products. Drug Resist Updat. 2010;13:172–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Lieberman MM, Patterson GML, Moore RE. In vitro bioassays for anticancer drug screening: effects of cell concentration and other assay parameters on growth inhibitory activity. Cancer Lett. 2001;173:21–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol. 2008;19:73–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Kussmann M, Rezzi S, Daniel H. Profiling techniques in nutrition and health research. Curr Opin Biotechnol. 2008;19:83–99.PubMedCrossRefGoogle Scholar
  66. 66.
    Ito H, Gonthier MP, Manach C, Morand C, Mennen L, Remesy C, et al. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr. 2005;94:500–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang P, Liang Y, Zhou N, Chen B, Yi L, Yu Y, et al. Screening and analysis of the multiple absorbed bioactive components and metabolites of dangguibuxue decoction by the metabolic fingerprinting technique and liquid chromatography/diode-array detection mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:99–106.PubMedCrossRefGoogle Scholar
  68. 68.
    Chen C, Meng L, Ma X, Krausz KW, Pommier Y, Idle JR, et al. Urinary metabolite profiling reveals CYP1A2-mediated metabolism of NSC686288 (aminoflavone). J Pharmacol Exp Ther. 2006;318:1330–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Giri S, Idle JR, Chen C, Zabriskie TM, Krausz KW, Gonzalez FJ. A metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse. Chem Res Toxicol. 2006;19:818–27.PubMedCrossRefGoogle Scholar
  70. 70.
    Yao D, Shi X, Wang L, Gosnell BA, Chen C. Characterization of differential cocaine metabolism in mouse and rat through metabolomics-guided metabolite profiling. Drug Metab Dispos. 2013;41:79–88.PubMedCrossRefGoogle Scholar
  71. 71.
    Fang ZZ, Krausz KW, Li F, Cheng J, Tanaka N, Gonzalez FJ. Metabolic map and bioactivation of the anti-tumour drug noscapine. Br J Pharmacol. 2012;167:1271–86.Google Scholar
  72. 72.
    Chen C, Krausz KW, Idle JR, Gonzalez FJ. Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and cyp2e1-null mice. J Biol Chem. 2008;283:4543–59.PubMedCrossRefGoogle Scholar
  73. 73.
    Shi X, Yao D, Chen C. Identification of n-acetyltaurine as a novel metabolite of ethanol through metabolomics-guided biochemical analysis. J Biol Chem. 2012;287:6336–49.PubMedCrossRefGoogle Scholar
  74. 74.
    Jiang XL, Gonzalez FJ, Yu AM. Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev. 2011;43:27–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Chen C, Ma X, Malfatti MA, Krausz KW, Kimura S, Felton JS, et al. A comprehensive investigation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PHiP) metabolism in the mouse using a multivariate data analysis approach. Chem Res Toxicol. 2007;20:531–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21:297–308.PubMedCrossRefGoogle Scholar
  78. 78.
    Arakaki AK, Skolnick J, McDonald JF. Marker metabolites can be therapeutic targets as well. Nature. 2008;456:443.PubMedCrossRefGoogle Scholar
  79. 79.
    Serkova NJ, Glunde K. Metabolomics of cancer. Methods Mol Biol. 2009;520:273–95.PubMedCrossRefGoogle Scholar
  80. 80.
    Scalbert A, Knasmuller S. Genomic effects of phytochemicals and their implication in the maintenance of health. Br J Nutr. 2008;99(E Suppl 1):ES1–2.PubMedGoogle Scholar
  81. 81.
    Spencer JP. Flavonoids: modulators of brain function? Br J Nutr. 2008;99(E Suppl 1):ES60–77.PubMedGoogle Scholar
  82. 82.
    Fardet A, Llorach R, Martin JF, Besson C, Lyan B, Pujos-Guillot E, et al. A liquid chromatography-quadrupole time-of-flight (LC-QToF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. J Proteome Res. 2008;7:2388–98.PubMedCrossRefGoogle Scholar
  83. 83.
    Robertson DG, Watkins PB, Reily MD. Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci. 2011;120 Suppl 1:S146–70.PubMedCrossRefGoogle Scholar
  84. 84.
    Griffin JL, Nicholls AW. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics. 2006;7:1095–107.PubMedCrossRefGoogle Scholar
  85. 85.
    Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610.PubMedCrossRefGoogle Scholar
  86. 86.
    Solanky KS, Bailey NJ, Beckwith-Hall BM, Bingham S, Davis A, Holmes E, et al. Biofluid 1H NMR-based metabonomic techniques in nutrition research—metabolic effects of dietary isoflavones in humans. J Nutr Biochem. 2005;16:236–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Van Dorsten FA, Daykin CA, Mulder TPJ, Van Duynhoven JPM. Metabonomics approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem. 2006;54:6929–38.PubMedCrossRefGoogle Scholar
  88. 88.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang Y, Tang H, Nicholson JK, Hylands PJ, Sampson J, Holmes E. A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem. 2005;53:191–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Bayet-Robert M, and Morvan D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS One. 2013;8:e57971.Google Scholar
  91. 91.
    Verpoorte R, Choi YH, Kim HK. Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol. 2005;100:53–6.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  1. 1.Department of Food Science and NutritionUniversity of MinnesotaSt. PaulUSA

Personalised recommendations