The AAPS Journal

, Volume 15, Issue 2, pp 618–622

Direct and Rapid Genotyping of SLCO1B1 388A>G and 521T>C in Human Blood Specimens Using the SmartAmp-2 Method

  • Kenta Yoshida
  • Junichi Takano
  • Yuri Ishizu
  • Alexander Lezhava
  • Ichiro Ieiri
  • Kazuya Maeda
  • Yoshihide Hayashizaki
  • Yuichi Sugiyama
Brief/Technical Note


Organic anion-transporting polypeptide (OATP) 1B1, encoded by the solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, mediates the active uptake of various organic anions into hepatocytes and determines their hepatic clearances as the first step in the detoxification pathway. Previous reports indicated that alterations in its function by drug–drug interactions or genetic polymorphisms affect the pharmacokinetics of the substrate drugs. In the present study, we developed a method to genotype SLCO1B1 388A>G (rs2306283) and 521>C (rs4149056), which significantly affect the clinical pharmacokinetics and subsequent side effects such as myopathy caused by statins, OATP1B1 substrates in humans. We used a small aliquot of blood and the isothermal Smart Amplification Process version 2 (SmartAmp-2), which could complete the genotyping of 388A>G and 521T>C within 60 min. The genotypes of 101 genomic DNA samples and blood samples assessed by SmartAmp-2 matched perfectly to those determined previously by the conventional PCR-SSCP method. The SmartAmp-2 method enables the rapid identification of the 388A>G and 521T>C genotypes, saving time and effort in the genomic DNA preparation in clinical practice. This method will be useful for evaluating and predicting altered pharmacological and toxicological effects of substrate drugs caused by SLCO1B1 polymorphisms.


membrane transporters pharmacogenetics single nucleotide polymorphisms 



3′-Amino modifier C7


Area under the concentration–time curve




Mutated type


Organic anion-transporting polypeptide 1B1


Restriction fragment length polymorphism


Solute carrier organic anion transporter family member 1B1


Smart Amplification Process version 2


Single nucleotide polymorphism


Single-strand conformation polymorphism


Wild type


  1. 1.
    Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab Pharmacokinet. 2008;23(4):223–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Yoshida K, Maeda K, Sugiyama Y. Transporter-mediated drug–drug interactions involving OATP substrates: predictions based on in vitro inhibition studies. Clin Pharmacol Ther. 2012;91(6):1053–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M, Daly AK, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005;77(6):468–78.PubMedCrossRefGoogle Scholar
  5. 5.
    Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N Engl J Med. 2008;359(8):789–99.PubMedCrossRefGoogle Scholar
  6. 6.
    Mitani Y, Lezhava A, Kawai Y, Kikuchi T, Oguchi-Katayama A, Kogo Y, et al. Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology. Nat Methods. 2007;4(3):257–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Biswas I, Hsieh P. Identification and characterization of a thermostable MutS homolog from Thermus aquaticus. J Biol Chem. 1996;271(9):5040–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther. 2003;73(6):554–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Kawai Y, Kikuchi T, Mitani Y, Kogo Y, Itoh M, Usui K, et al. Sensitive detection of EGFR mutations using a competitive probe to suppress background in the SMart Amplification Process. Biologicals. 2008;36(4):234–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Watanabe J, Mitani Y, Kawai Y, Kikuchi T, Kogo Y, Oguchi-Katayama A, et al. Use of a competitive probe in assay design for genotyping of the UGT1A1 *28 microsatellite polymorphism by the smart amplification process. Biotechniques. 2007;43(4):479–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem. 2001;276(38):35669–75.PubMedCrossRefGoogle Scholar
  12. 12.
    Nozawa T, Nakajima M, Tamai I, Noda K, Nezu J, Sai Y, et al. Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J Pharmacol Exp Ther. 2002;302(2):804–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Op den Buijsch RA, Wijnen PA, van Dieijen-Visser MP, de Vries JE, Bekers O. Rapid genotyping of the OATP1B1 polymorphisms A388G and T521C with real-time PCR FRET assays. Pharmacogenomics. 2005;6(4):393–7.CrossRefGoogle Scholar
  14. 14.
    Lezhava A, Ishidao T, Ishizu Y, Naito K, Hanami T, Katayama A, et al. Exciton primer-mediated SNP detection in SmartAmp2 reactions. Hum Mutat. 2010;31(2):208–17.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Kenta Yoshida
    • 1
  • Junichi Takano
    • 1
  • Yuri Ishizu
    • 2
  • Alexander Lezhava
    • 2
  • Ichiro Ieiri
    • 3
  • Kazuya Maeda
    • 1
  • Yoshihide Hayashizaki
    • 2
  • Yuichi Sugiyama
    • 4
  1. 1.Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical SciencesThe University of TokyoTokyoJapan
  2. 2.Technology Development Unit, Omics Science CenterRIKENYokohamaJapan
  3. 3.Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  4. 4.Sugiyama Laboratory, RIKEN Innovation CenterRIKEN Research Cluster for InnovationYokohamaJapan

Personalised recommendations