The AAPS Journal

, Volume 15, Issue 2, pp 324–336

Highly Stabilized Curcumin Nanoparticles Tested in an In Vitro Blood–Brain Barrier Model and in Alzheimer’s Disease Tg2576 Mice

  • Kwok Kin Cheng
  • Chin Fung Yeung
  • Shuk Wai Ho
  • Shing Fung Chow
  • Albert H. L. Chow
  • Larry Baum
Research Article

Abstract

The therapeutic effects of curcumin in treating Alzheimer’s disease (AD) depend on the ability to penetrate the blood–brain barrier. The latest nanoparticle technology can help to improve the bioavailability of curcumin, which is affected by the final particle size and stability. We developed a stable curcumin nanoparticle formulation to test in vitro and in AD model Tg2576 mice. Flash nanoprecipitation of curcumin, polyethylene glycol-polylactic acid co-block polymer, and polyvinylpyrrolidone in a multi-inlet vortex mixer, followed by freeze drying with β-cyclodextrin, produced dry nanocurcumin with mean particle size <80 nm. Nanocurcumin powder, unformulated curcumin, or placebo was orally administered to Tg2576 mice for 3 months. Before and after treatment, memory was measured by radial arm maze and contextual fear conditioning tests. Nanocurcumin produced significantly (p = 0.04) better cue memory in the contextual fear conditioning test than placebo and tendencies toward better working memory in the radial arm maze test than ordinary curcumin (p = 0.14) or placebo (p = 0.12). Amyloid plaque density, pharmacokinetics, and Madin–Darby canine kidney cell monolayer penetration were measured to further understand in vivo and in vitro mechanisms. Nanocurcumin produced significantly higher curcumin concentration in plasma and six times higher area under the curve and mean residence time in brain than ordinary curcumin. The Papp of curcumin and tetrahydrocurcumin were 1.8 × 10−6 and 1.6 × 10−5 cm/s, respectively, for nanocurcumin. Our novel nanocurcumin formulation produced highly stabilized nanoparticles with positive treatment effects in Tg2576 mice.

Key words

Alzheimer’s disease behavior tests nanocurcumin oral route pharmacokinetic 

Supplementary material

12248_2012_9444_MOESM1_ESM.gif (15 kb)
Fig. S1aANCOVA modeling for number of reentry errors (S1a–c) and error entries (S1d–f) in radial arm maze tests (n = 13 for NC and control, and n = 10 for CUR). After-treatment error was described by a single regression equation: \( {{\left( {\mathrm{Errors}} \right)}_{{\mathrm{after}\,\mathrm{treatment}}}}=\mathrm{constant} + a\times {{\left( {\mathrm{Errors}} \right)}_{{\mathrm{before}\,\mathrm{treatment}}}}+b\times \mathrm{treatment}\,\mathrm{group} \). (GIF 15 kb)
12248_2012_9444_MOESM2_ESM.gif (12 kb)
Fig. S1b(GIF 11 kb)
12248_2012_9444_MOESM3_ESM.gif (11 kb)
Fig. S1c(GIF 10 kb)
12248_2012_9444_MOESM4_ESM.gif (15 kb)
Fig. S1d(GIF 15 kb)
12248_2012_9444_MOESM5_ESM.gif (11 kb)
Fig. S1e(GIF 11 kb)
12248_2012_9444_MOESM6_ESM.gif (10 kb)
Fig. S1f(GIF 10 kb)
12248_2012_9444_MOESM7_ESM.gif (123 kb)
Fig. S2aFour fields of a brain section, stained with ThT, of Tg2576 mice treated with a control, b NC or c CUR (GIF 123 kb)
12248_2012_9444_MOESM8_ESM.gif (121 kb)
Fig. S2b(GIF 121 kb)
12248_2012_9444_MOESM9_ESM.gif (107 kb)
Fig. S2c(GIF 106 kb)

References

  1. 1.
    Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2012;8:131–68.CrossRefGoogle Scholar
  2. 2.
    Petrella JR, Coleman RE, Doraiswamy PM. Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology. 2003;226:315–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Lockhart A, Lamb JR, Osredkar T, Sue LI, Joyce JN, Ye L, et al. PIB is a non-specific imaging marker of amyloid-beta (Aβ) peptide-related cerebral amyloidosis. Brain. 2007;130:2607–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Reinke AA, Gestwicki JE. Structure–activity relationships of amyloid beta-aggregation inhibitors based on curcumin: influence of linker length and flexibility. Chem Biol Drug Des. 2007;70:206–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280:5892–901.PubMedCrossRefGoogle Scholar
  6. 6.
    Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther. 2008;326:196–208.PubMedCrossRefGoogle Scholar
  7. 7.
    Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21:8370–7.PubMedGoogle Scholar
  8. 8.
    Cheng A, Hsu C, Lin J, Hsu M, Ho Y, Shen T, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–900.PubMedGoogle Scholar
  9. 9.
    Toennesen HH, Karlsen J. Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z Lebensm Unters Forsch. 1985;180:402–4.CrossRefGoogle Scholar
  10. 10.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharmaceutics. 2007;4:807–18.CrossRefGoogle Scholar
  11. 11.
    Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244:127–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu A, Lou H, Zhao L, Fan P. Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal. 2006;40:720–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Schranz JL. Coloring agents. Brit UK Pat Appl. 1984:5.Google Scholar
  14. 14.
    Todd PH, Jr. Curcumin complexed on water-dispersible substrates. United States Patent. 1991;US4999205.Google Scholar
  15. 15.
    Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One. 2012;7:e32616.PubMedCrossRefGoogle Scholar
  16. 16.
    Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurcTM) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimer’s Dis. 2011;23:61–77.Google Scholar
  17. 17.
    Tsai Y, Chien C, Lin L, Tsai T. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm. 2011;416:331–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79:330–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Gavi E, Rivautella L, Marchisio DL, Vanni M, Barresi AA, Baldi G. CFD modelling of nano-particle precipitation in confined impinging jet reactors. Chem Eng Res Design. 2007;85:735–44.CrossRefGoogle Scholar
  20. 20.
    Gavi E, Marchisio DL, Barresi AA. CFD modelling and scale-up of confined impinging jet reactors. Chemical Engineering Science. 2007;62:2228–41.CrossRefGoogle Scholar
  21. 21.
    Liu Y, Fox RO. CFD predictions for chemical processing in a confined impinging-jets reactor. AIChE J. 2006;52:731–44.CrossRefGoogle Scholar
  22. 22.
    Liu Y, Cheng C, Liu Y, Prud’homme RK, Fox RO. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chemical Engineering Science. 2008;63:2829–42.CrossRefGoogle Scholar
  23. 23.
    Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, et al. In vitro models for the blood–brain barrier. Toxicology in Vitro. 2005;19:299–334.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou S, Lim LY, Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab Rev. 2004;36:57–104.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang C, Kwan P, Zuo Z, Baum L. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86:899–905.PubMedCrossRefGoogle Scholar
  26. 26.
    Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–103.PubMedCrossRefGoogle Scholar
  27. 27.
    Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG. Age-dependent changes in brain, CSF, and plasma amyloid β protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci. 2001;21:372–81.PubMedGoogle Scholar
  28. 28.
    Vickers AJ, Altman DG. Analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323:1123–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55:495–503.PubMedCrossRefGoogle Scholar
  30. 30.
    Ghosh D, Choudhury ST, Ghosh S, Mandal AK, Sarkar S, Ghosh A, et al. Nanocapsulated curcumin: oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chem Biol Interact. 2012;195:206–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MNVR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. Journal of Nanobiotechnology. 2007;5:3.PubMedCrossRefGoogle Scholar
  33. 33.
    Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10:141–62.CrossRefGoogle Scholar
  34. 34.
    Yin Win K, Feng S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.CrossRefGoogle Scholar
  35. 35.
    Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13:1838–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Studart AR, Amstad E, Gauckler LJ. Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir. 2007;23:1081–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Gaucher G, Dufresne M, Sant VP, Kang N, Maysinger D, Leroux J. Block copolymer micelles: preparation, characterization and application in drug delivery. J Controlled Release. 2005;109:169–88.CrossRefGoogle Scholar
  38. 38.
    Wang Q, Rager JD, Weinstein K, Kardos PS, Dobson GL, Li J, et al. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood–brain barrier. Int J Pharm. 2005;288:349–59.PubMedCrossRefGoogle Scholar
  39. 39.
    Buckley ST, Fischer SM, Fricker G, Brandl M. In vitro models to evaluate the permeability of poorly soluble drug entities: challenges and perspectives. Eur J Pharm Sci. 2012;45:235–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Quitschke W. Differential solubility of curcuminoids in serum and albumin solutions: implications for analytical and therapeutic applications. BMC Biotechnol. 2008;8:84.PubMedCrossRefGoogle Scholar
  41. 41.
    Shen L, Ji H. Contribution of degradation products to the anticancer activity of curcumin. Clin Cancer Res. 2009. doi:10.1158/1078-0432.CCR-09-1749.
  42. 42.
    Pan M, Huang T, Lin J. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999;27:486–94.PubMedGoogle Scholar
  43. 43.
    Zhongfa L, Chiu M, Wang J, Chen W, Yen W, Fan-Havard P, et al. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother Pharmacol. 2012;69:679–89.PubMedCrossRefGoogle Scholar
  44. 44.
    Ireson CR, Jones DJL, Orr S, Coughtrie MWH, Boocock DJ, Williams ML, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev. 2002;11:105–11.PubMedGoogle Scholar
  45. 45.
    Rolls ET. A theory of hippocampal function in memory. Hippocampus. 1996;6:601–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim SJ, Son TG, Park HR, Park M, Kim M, Kim HS, et al. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem. 2008;283:14497–505.PubMedCrossRefGoogle Scholar
  47. 47.
    Givens B, Olton D. Local modulation of basal forebrain: effects on working and reference memory. J Neurosci. 1994;14:3578–87.PubMedGoogle Scholar
  48. 48.
    Stéphan A, Laroche S, Davis S. Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J Neurosci. 2001;21:5703–14.PubMedGoogle Scholar
  49. 49.
    Liu IYC, Lyons WE, Mamounas LA, Thompson RF. Brain-derived neurotrophic factor plays a critical role in contextual fear conditioning. J Neurosci. 2004;24:7958–63.PubMedCrossRefGoogle Scholar
  50. 50.
    Yao I, Takao K, Miyakawa T, Ito S, Setou M. Synaptic E3 ligase SCRAPPER in contextual fear conditioning: extensive Behavioral phenotyping of Scrapper heterozygote and overexpressing mutant mice. PLoS One. 2011;6:e17317.PubMedCrossRefGoogle Scholar
  51. 51.
    Curzon P, Rustay N, Browman K. Cued and contextual fear conditioning for rodents. In: Buccafusco J, Buccafusco J, editors. Methods of behavior analysis in neuroscience. Boca Raton, FL: CRC Press; 2009. Chapter 2.Google Scholar
  52. 52.
    Barnes P, Good M. Impaired Pavlovian cued fear conditioning in Tg2576 mice expressing a human mutant amyloid precursor protein gene. Behav Brain Res. 2005;157:107–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, et al. The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci. 2002;22:1858–67.PubMedGoogle Scholar
  54. 54.
    Dodart J, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, et al. Immunization reverses memory deficits without reducing brain A[beta] burden in Alzheimer’s disease model. Nat Neurosci. 2002;5:452–7.PubMedGoogle Scholar
  55. 55.
    Ashe KH. Learning and memory in transgenic mice modeling Alzheimer’s disease. Learn Mem. 2001;8:301–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Klein WL, Krafft GA, Finch CE. Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 2001;24:219–24.PubMedCrossRefGoogle Scholar
  57. 57.
    Hsia AY, Masliah E, McConlogue L, Yu G, Tatsuno G, Hu K, et al. Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci. 1999;96:3228–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, et al. A specific amyloid-β protein assembly in the brain impairs memory. Nature. 2006;440:352–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Ali RE, Rattan SIS. Curcumin’s biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann N Y Acad Sci. 2006;1067:394–9.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Kwok Kin Cheng
    • 1
  • Chin Fung Yeung
    • 1
  • Shuk Wai Ho
    • 1
  • Shing Fung Chow
    • 1
  • Albert H. L. Chow
    • 1
  • Larry Baum
    • 1
  1. 1.School of PharmacyThe Chinese University of Hong KongShatin, N.T.China

Personalised recommendations