The AAPS Journal

, Volume 13, Issue 2, pp 159–168 | Cite as

The Immunosuppressive Activity of Polymeric Micellar Formulation of Cyclosporine A: In Vitro and In Vivo Studies

  • Samar Hamdy
  • Azita Haddadi
  • Anooshirvan Shayeganpour
  • Aws Alshamsan
  • Hamidreza Montazeri Aliabadi
  • Afsaneh Lavasanifar
Research Article

Abstract

We have previously developed micelles of methoxy poly(ethylene oxide)-b-poly(ε-caprolactone) as vehicles for the solubilization and delivery of cyclosporine A (CsA). These micelles were able to reduce the renal uptake and nephrotoxicity of CsA. The purpose of the current study was to test the efficacy of polymeric micellar formulation of CsA (PM-CsA) in suppressing immune responses by either T cells or dendritic cells (DCs). The performance of PM-CsA was compared to that of the commercially available formulation of CsA (Sandimmune®). Our results demonstrate that PM-CsA could exert a potent immunosuppressive effect similar to that of Sandimmune® both in vitro and in vivo. Both formulations inhibited phenotypic maturation of DCs and impaired their allostimulatory capacity. Furthermore, both PM-CsA and Sandimmune® have shown similar dose-dependent inhibition of in vitro T cell proliferative responses. A similar pattern was observed in the in vivo study, where T cells isolated from both PM-CsA-treated and Sandimmune®-treated mice have shown impairment in their proliferative response and IFN-γ production at similar levels. These results highlight the potential of polymeric micelles to serve as efficient vehicles for the delivery of CsA.

KEY WORDS

cyclosporine A dendritic cells polymeric micelles T cells 

REFERENCES

  1. 1.
    Italia JL, Bhardwaj V, Kumar MN. Disease, destination, dose and delivery aspects of ciclosporin: the state of the art. Drug Discov Today. 2006;11(17–18):846–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Faulds D, Goa KL, Benfield P. Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs. 1993;45(6):953–1040.PubMedCrossRefGoogle Scholar
  3. 3.
    Ismailos G, Reppas C, Dressman JB, Macheras P. Unusual solubility behaviour of cyclosporin A in aqueous media. J Pharm Pharmacol. 1991;43(4):287–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Beauchesne PR, Chung NS, Wasan KM. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm. 2007;33(3):211–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Czogalla A. Oral cyclosporine A—the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett. 2009;14(1):139–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Aliabadi HM, Mahmud A, Sharifabadi AD, Lavasanifar A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Control Release. 2005;104(2):301–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Aliabadi HM, Brocks DR, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Biomaterials. 2005;26(35):7251–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Aliabadi HM, Elhasi S, Brocks DR, Lavasanifar A. Polymeric micellar delivery reduces kidney distribution and nephrotoxic effects of Cyclosporine A after multiple dosing. J Pharm Sci. 2008;97(5):1916–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Nishiyama N, Kato Y, Sugiyama Y, Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res. 2001;18(7):1035–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Kwon GS, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Biodistribution of micelle-forming polymer-drug conjugates. Pharm Res. 1993;10(7):970–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang X, Burt HM, Mangold G, Dexter D, Von Hoff D, Mayer L, et al. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs. 1997;8(7):696–701.PubMedCrossRefGoogle Scholar
  12. 12.
    Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, Fiorentino D, et al. The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol. 1996;80(3 Pt 2):S40–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Geng L, Dong S, Fang Y, Jiang G, Xie H, Shen M, et al. Cyclosporin a up-regulates B7-DC expression on dendritic cells in an IL-4-dependent manner in vitro, which is associated with decreased allostimulatory capacity of dendritic cells. Immunopharmacol Immunotoxicol. 2008;30(2):399–409.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen T, Guo J, Yang M, Han C, Zhang M, Chen W, et al. Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood. 2004;103(2):413–21.PubMedCrossRefGoogle Scholar
  15. 15.
    Duperrier K, Farre A, Bienvenu J, Bleyzac N, Bernaud J, Gebuhrer L, et al. Cyclosporin A inhibits dendritic cell maturation promoted by TNF-alpha or LPS but not by double-stranded RNA or CD40L. J Leukoc Biol. 2002;72(5):953–61.PubMedGoogle Scholar
  16. 16.
    Aliabadi HM, Elhasi S, Mahmud A, Gulamhusein R, Mahdipoor P, Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329(1–2):158–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223(1):77–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Azzi J, Tang L, Moore R, Tong R, El Haddad N, Akiyoshi T, et al. Polylactide-cyclosporin A nanoparticles for targeted immunosuppression. FASEB J. 2010;24(10):3927–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Vitko S, Viklicky O. Cyclosporine renal dysfunction. Transplant Proc. 2004;36(2 Suppl):243S–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Kalthoff F, Elbe-Burger A. RE: effects of cyclosporine on human dendritic cell subsets. Transplant Proc. 2005;37(10):4639–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Ciesek S, Ringe BP, Strassburg CP, Klempnauer J, Manns MP, Wedemeyer H, et al. Effects of cyclosporine on human dendritic cell subsets. Transplant Proc. 2005;37(1):20–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Tajima K, Amakawa R, Ito T, Miyaji M, Takebayashi M, Fukuhara S. Immunomodulatory effects of cyclosporin A on human peripheral blood dendritic cell subsets. Immunology. 2003;108(3):321–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Akool el S, Doller A, Babelova A, Tsalastra W, Moreth K, Schaefer L, et al. Molecular mechanisms of TGF beta receptor-triggered signaling cascades rapidly induced by the calcineurin inhibitors cyclosporin A and FK506. J Immunol. 2008;181(4):2831–45.Google Scholar
  24. 24.
    Li B, Sehajpal PK, Khanna A, Vlassara H, Cerami A, Stenzel KH, et al. Differential regulation of transforming growth factor beta and interleukin 2 genes in human T cells: demonstration by usage of novel competitor DNA constructs in the quantitative polymerase chain reaction. J Exp Med. 1991;174(5):1259–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Haddadi A, Elamanchili P, Lavasanifar A, Das S, Shapiro J, Samuel J. Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A. 2008;84(4):885–98.PubMedGoogle Scholar
  26. 26.
    Hao J, Kwissa M, Pulendran B, Murthy N. Peptide crosslinked micelles: a new strategy for the design and synthesis of peptide vaccines. Int J Nanomedicine. 2006;1(1):97–103.PubMedCrossRefGoogle Scholar
  27. 27.
    Boudier A, Aubert-Pouessel A, Louis-Plence P, Gerardin C, Jorgensen C, Devoisselle JM, et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles. Biomaterials. 2009;30(2):233–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Liao YP, Wang CC, Butterfield LH, Economou JS, Ribas A, Meng WS, et al. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol. 2004;173(4):2462–9.PubMedGoogle Scholar
  29. 29.
    Varela MC, Guzman M, Molpeceres J, del Rosario Aberturas M, Rodriguez-Puyol D, Rodriguez-Puyol M. Cyclosporine-loaded polycaprolactone nanoparticles: immunosuppression and nephrotoxicity in rats. Eur J Pharm Sci. 2001;12(4):471–8.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2011

Authors and Affiliations

  • Samar Hamdy
    • 1
  • Azita Haddadi
    • 2
  • Anooshirvan Shayeganpour
    • 1
  • Aws Alshamsan
    • 1
    • 3
  • Hamidreza Montazeri Aliabadi
    • 4
  • Afsaneh Lavasanifar
    • 1
    • 4
  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.College of Pharmacy and NutritionUniversity of SaskatchewanSaskatoonCanada
  3. 3.Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Faculty of Engineering, Department of Chemical and Material EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations