The AAPS Journal

, Volume 12, Issue 4, pp 492–503 | Cite as

Delivery of siRNA Therapeutics: Barriers and Carriers

  • Jie Wang
  • Ze Lu
  • M. Guillaume Wientjes
  • Jessie L.-S. Au
Review Article Theme: siRNA and microRNA: From Target Validation to Therapy

Abstract

RNA interference is a naturally occurring endogenous regulatory process where short double-stranded RNA causes sequence-specific posttranscriptional gene silencing. Small interference RNA (siRNA) represents a promising therapeutic strategy. Clinical evaluations of siRNA therapeutics in locoregional treatment settings began in 2004. Systemic siRNA therapy is hampered by the barriers for siRNA to reach their intended targets in the cytoplasm and to exert their gene silencing activity. The three goals of this review were to provide an overview of (a) the barriers to siRNA delivery, from the perspectives of physicochemical properties of siRNA, pharmacokinetics and biodistribution, and intracellular trafficking; (b) the non-viral siRNA carriers including cell-penetrating peptides, polymers, dendrimers, siRNA bioconjugates, and lipid-based siRNA carriers; and (c) the current status of the clinical trials of siRNA therapeutics.

Key words

gene therapy nanotechnology siRNA systemic delivery vectors 

References

  1. 1.
    Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009;457(7228):426–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev. 2007;59(2–3):164–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Jeong JH, Mok H, Oh YK, Park TG. siRNA conjugate delivery systems. Bioconjug Chem. 2009;20(1):5–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev. 2009;61(9):721–31.CrossRefPubMedGoogle Scholar
  6. 6.
    de Martimprey H, Vauthier C, Malvy C, Couvreur P. Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm. 2009;71(3):490–504.CrossRefPubMedGoogle Scholar
  7. 7.
    Meade BR, Dowdy SF. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv Drug Deliv Rev. 2007;59(2–3):134–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Lewis DL, Wolff JA. Systemic siRNA delivery via hydrodynamic intravascular injection. Adv Drug Deliv Rev. 2007;59(2–3):115–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005;30(2):106–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Grimm D. Small silencing RNAs: state-of-the-art. Adv Drug Deliv Rev. 2009;61(9):672–703.CrossRefPubMedGoogle Scholar
  11. 11.
    Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16(8):948–58.CrossRefPubMedGoogle Scholar
  12. 12.
    McIntyre GJ, Fanning GC. Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol. 2006;6:1.CrossRefPubMedGoogle Scholar
  13. 13.
    Esau CC, Monia BP. Therapeutic potential for microRNAs. Adv Drug Deliv Rev. 2007;59(2–3):101–14.CrossRefPubMedGoogle Scholar
  14. 14.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Takahashi Y, Nishikawa M, Takakura Y. Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev. 2009;61(9):760–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Takahashi Y, Yamaoka K, Nishikawa M, Takakura Y. Quantitative and temporal analysis of gene silencing in tumor cells induced by small interfering RNA or short hairpin RNA expressed from plasmid vectors. J Pharm Sci. 2009;98(1):74–80.CrossRefPubMedGoogle Scholar
  17. 17.
    McAnuff MA, Rettig GR, Rice KG. Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci. 2007;96(11):2922–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Aagaard L, Rossi JJ. RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev. 2007;59(2–3):75–86.CrossRefPubMedGoogle Scholar
  20. 20.
    Judge AD, Bola G, Lee AC, MacLachlan I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006;13(3):494–505.CrossRefPubMedGoogle Scholar
  21. 21.
    Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA. 2006;12(7):1179–87.CrossRefPubMedGoogle Scholar
  22. 22.
    Fedorov Y, King A, Anderson E, Karpilow J, Ilsley D, Marshall W, et al. Different delivery methods—different expression profiles. Nat Meth. 2005;2(4):241.CrossRefGoogle Scholar
  23. 23.
    Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev. 2009;61(9):746–59.CrossRefPubMedGoogle Scholar
  24. 24.
    Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Bitko V, Musiyenko A, Shulyayeva O, Barik S. Inhibition of respiratory viruses by nasally administered siRNA. Nat Med. 2005;11(1):50–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Thomas M, Lu JJ, Chen J, Klibanov AM. Non-viral siRNA delivery to the lung. Adv Drug Deliv Rev. 2007;59(2–3):124–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Pardridge WM. shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev. 2007;59(2–3):141–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Geusens B, Sanders N, Prow T, Van Gele M, Lambert J. Cutaneous short-interfering RNA therapy. Expert Opin Drug Deliv. 2009;6(12):1333–49.CrossRefPubMedGoogle Scholar
  29. 29.
    Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev. 2006;58(11):1203–23.CrossRefPubMedGoogle Scholar
  30. 30.
    van de Water FM, Boerman OC, Wouterse AC, Peters JG, Russel FG, Masereeuw R. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34(8):1393–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res. 2003;20(9):1337–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23(8):1002–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Gregoriadis G, Neerunjun DE. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem. 1974;47(1):179–85.CrossRefPubMedGoogle Scholar
  35. 35.
    Illum L, Davis SS. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338). FEBS Lett. 1984;167(1):79–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Norman ME, Williams P, Illum L. Influence of block copolymers on the adsorption of plasma proteins to microspheres. Biomaterials. 1993;14(3):193–202.CrossRefPubMedGoogle Scholar
  37. 37.
    Klibanov AL, Maruyama K, Beckerleg AM, Torchilin VP, Huang L. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta. 1991;1062(2):142–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Litzinger DC, Buiting AM, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim Biophys Acta. 1994;1190(1):99–107.CrossRefPubMedGoogle Scholar
  39. 39.
    Santel A, Aleku M, Keil O, Endruschat J, Esche V, Fisch G, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 2006;13(16):1222–34.CrossRefPubMedGoogle Scholar
  40. 40.
    Au JLS, Jang SH, Zheng J, Chen CT, Song S, Hu L, et al. Determinants of drug delivery and transport to solid tumors. J Control Release. 2001;74(1–3):31–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.CrossRefPubMedGoogle Scholar
  42. 42.
    Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.PubMedGoogle Scholar
  43. 43.
    Goula D, Becker N, Lemkine GF, Normandie P, Rodrigues J, Mantero S, et al. Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes. Gene Ther. 2000;7(6):499–504.CrossRefPubMedGoogle Scholar
  44. 44.
    Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev. 1997;77(3):759–803.PubMedGoogle Scholar
  45. 45.
    Endoh T, Ohtsuki T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev. 2009;61(9):704–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Unnamalai N, Kang BG, Lee WS. Cationic oligopeptide-mediated delivery of dsRNA for post-transcriptional gene silencing in plant cells. FEBS Lett. 2004;566(1–3):307–10.CrossRefPubMedGoogle Scholar
  47. 47.
    Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31(11):2717–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 2004;558(1–3):63–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Davidson TJ, Harel S, Arboleda VA, Prunell GF, Shelanski ML, Greene LA, et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation. J Neurosci. 2004;24(45):10040–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Chiu YL, Ali A, Chu CY, Cao H, Rana TM. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 2004;11(8):1165–75.CrossRefPubMedGoogle Scholar
  51. 51.
    Agarwal A, Unfer R, Mallapragada SK. Novel cationic pentablock copolymers as non-viral vectors for gene therapy. J Control Release. 2005;103(1):245–58.CrossRefPubMedGoogle Scholar
  52. 52.
    Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92(16):7297–301.CrossRefPubMedGoogle Scholar
  53. 53.
    Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther. 1996;7(16):1947–54.CrossRefPubMedGoogle Scholar
  54. 54.
    Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm. 2009;71(3):463–74.CrossRefPubMedGoogle Scholar
  55. 55.
    Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2005;12(5):461–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest. 2007;117(12):3623–32.CrossRefPubMedGoogle Scholar
  57. 57.
    Werth S, Urban-Klein B, Dai L, Hobel S, Grzelinski M, Bakowsky U, et al. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release. 2006;112(2):257–70.CrossRefPubMedGoogle Scholar
  58. 58.
    Tan PH, Yang LC, Shih HC, Lan KC, Cheng JT. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther. 2005;12(1):59–66.CrossRefPubMedGoogle Scholar
  59. 59.
    Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 2004;32(19):e149.CrossRefPubMedGoogle Scholar
  60. 60.
    Khan A, Benboubetra M, Sayyed PZ, Ng KW, Fox S, Beck G, et al. Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J Drug Target. 2004;12(6):393–404.CrossRefPubMedGoogle Scholar
  61. 61.
    Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine. 2007;3(3):173–83.PubMedGoogle Scholar
  62. 62.
    Katas H, Chen S, Osamuyimen AA, Cevher E, Alpar HO. Effect of preparative variables on small interfering RNA loaded poly(d, l-lactide-co-glycolide)–chitosan submicron particles prepared by emulsification diffusion method. J Microencapsul. 2008;25:541–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Nguyen J, Steele TW, Merkel O, Reul R, Kissel T. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Control Release. 2008;132(3):243–51.CrossRefPubMedGoogle Scholar
  64. 64.
    Katas H, Cevher E, Alpar HO. Preparation of polyethyleneimine incorporated poly(d,l-lactide-co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering RNA delivery. Int J Pharm. 2009;369(1–2):144–54.CrossRefPubMedGoogle Scholar
  65. 65.
    Patil Y, Panyam J. Polymeric nanoparticles for siRNA delivery and gene silencing. Int J Pharm. 2009;367(1–2):195–203.CrossRefPubMedGoogle Scholar
  66. 66.
    Murata N, Takashima Y, Toyoshima K, Yamamoto M, Okada H. Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice. J Control Release. 2008;126(3):246–54.CrossRefPubMedGoogle Scholar
  67. 67.
    Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater. 2009;8(6):526–33.CrossRefPubMedGoogle Scholar
  68. 68.
    Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm. 2009;71(3):445–62.CrossRefPubMedGoogle Scholar
  69. 69.
    Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252(1–2):263–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Patil ML, Zhang M, Taratula O, Garbuzenko OB, He H, Minko T. Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules. 2009;10(2):258–66.CrossRefPubMedGoogle Scholar
  71. 71.
    Patil ML, Zhang M, Betigeri S, Taratula O, He H, Minko T. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug Chem. 2008;19(7):1396–403.CrossRefPubMedGoogle Scholar
  72. 72.
    Yang H, Morris JJ, Lopina ST. Polyethylene glycol–polyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water. J Colloid Interface Sci. 2004;273(1):148–54.CrossRefPubMedGoogle Scholar
  73. 73.
    Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med. 2001;46(4):781–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Tack F, Bakker A, Maes S, Dekeyser N, Bruining M, Elissen-Roman C, et al. Modified poly(propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). J Drug Target. 2006;14(2):69–86.CrossRefPubMedGoogle Scholar
  75. 75.
    Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharov VP, et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release. 2009;140(3):284–93.CrossRefPubMedGoogle Scholar
  76. 76.
    Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. In vitro and in vivo gene transfer by an optimized alpha-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjug Chem. 2003;14(2):342–50.CrossRefPubMedGoogle Scholar
  77. 77.
    Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K. Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with alpha-cyclodextrin. Bioconjug Chem. 2002;13(6):1211–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Arima H, Kihara F, Hirayama F, Uekama K. Enhancement of gene expression by polyamidoamine dendrimer conjugates with alpha-, beta-, and gamma-cyclodextrins. Bioconjug Chem. 2001;12(4):476–84.CrossRefPubMedGoogle Scholar
  79. 79.
    Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev. 2008;60(9):1000–17.CrossRefPubMedGoogle Scholar
  80. 80.
    Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65(19):8984–92.CrossRefPubMedGoogle Scholar
  81. 81.
    Bartlett DW, Davis ME. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol Bioeng. 2008;99(4):975–85.CrossRefPubMedGoogle Scholar
  82. 82.
    Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA. 2007;104(39):15549–54.CrossRefPubMedGoogle Scholar
  83. 83.
    Heidel JD, Yu Z, Liu JY, Rele SM, Liang Y, Zeidan RK, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci USA. 2007;104(14):5715–21.CrossRefPubMedGoogle Scholar
  84. 84.
    Rozema DB, Ekena K, Lewis DL, Loomis AG, Wolff JA. Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug Chem. 2003;14(1):51–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA. 2007;104(32):12982–7.CrossRefPubMedGoogle Scholar
  86. 86.
    Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23(6):709–17.CrossRefPubMedGoogle Scholar
  87. 87.
    McNamara JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, et al. Cell type-specific delivery of siRNAs with aptamer–siRNA chimeras. Nat Biotechnol. 2006;24(8):1005–15.CrossRefPubMedGoogle Scholar
  88. 88.
    Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, et al. Systemic administration of optimized aptamer–siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol. 2009;27(9):839–49.CrossRefPubMedGoogle Scholar
  89. 89.
    Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61(10):850–62.CrossRefPubMedGoogle Scholar
  90. 90.
    Halder J, Kamat AA, Landen Jr CN, Han LY, Lutgendorf SK, Lin YG, et al. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res. 2006;12(16):4916–24.CrossRefPubMedGoogle Scholar
  91. 91.
    Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 2003;327(4):761–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441(7089):111–4.CrossRefPubMedGoogle Scholar
  93. 93.
    Li SD, Chen YC, Hackett MJ, Huang L. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther. 2008;16(1):163–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452(7187):591–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Feinstein E, Ashush H, Kleinman ME, Nozaki M, Kalinski H, Mett I, et al. PF-04523655 (REDD14), an siRNA compound targeting RTP801, penetrates retinal cells producing target gene knockdown and avoiding TLR3 activation. ARVO 2009 Annual Meeting, Abstract no. 5693, May 7; 2009.Google Scholar
  96. 96.
    Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009;6(3):659–68.CrossRefPubMedGoogle Scholar
  97. 97.
    Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067–70.CrossRefPubMedGoogle Scholar
  98. 98.
    Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008;68(23):9788–98.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Jie Wang
    • 1
  • Ze Lu
    • 1
  • M. Guillaume Wientjes
    • 1
  • Jessie L.-S. Au
    • 1
  1. 1.Optimum Therapeutics LLCThe Ohio State University Science Tech VillageColumbusUSA

Personalised recommendations