Advertisement

The AAPS Journal

, Volume 12, Issue 3, pp 385–396 | Cite as

A Quantitative Structure–Activity Relationship for Translocation of Tripeptides via the Human Proton-Coupled Peptide Transporter, hPEPT1 (SLC15A1)

  • Diana Højmark Omkvist
  • Simon Birksø Larsen
  • Carsten Uhd Nielsen
  • Bente Steffansen
  • Lars Olsen
  • Flemming Steen Jørgensen
  • Birger BrodinEmail author
Research Article

Abstract

The human intestinal proton-coupled peptide transporter, hPEPT1 (SLC15A1), has been identified as an absorptive transporter for both drug substances and prodrugs. An understanding of the prerequisites for transport has so far been obtained from models based on competition experiments. These models have limited value for predicting substrate translocation via hPEPT1. The aim of the present study was to investigate the requirements for translocation via hPEPT1. A set of 55 tripeptides was selected from a principal component analysis based on VolSurf descriptors using a statistical design. The majority of theses tripeptides have not previously been investigated. Translocation of the tripeptides via hPEPT1 was determined in a MDCK/hPEPT1 cell-based translocation assay measuring substrate-induced changes in fluorescence of a membrane potential-sensitive probe. Affinities for hPEPT1 of relevant tripeptides were determined by competition studies with [14C]Gly-Sar in MDCK/hPEPT1 cells. Forty tripeptides were found to be substrates for hPEPT1, having K m app values in the range 0.4–28 mM. Eight tripeptides were not able to cause a substrate-induced change in fluorescence in the translocation assay and seven tripeptides interacted with the probe itself. The conformationally restricted tripeptide Met-Pro-Pro was identified as a novel high-affinity inhibitor of hPEPT1. We also discovered the first tripeptide (Asp-Ile-Arg) that was neither a substrate nor an inhibitor of hPEPT1. To rationalise the requirements for transport, a quantitative structure–activity relationship model correlating K m app values with VolSurf descriptors was constructed. This is, to our knowledge, the first predictive model for the translocation of tripeptides via hPEPT1.

Key words

FLIPR membrane potential assay PEPT1 (SLC15A1) QSAR translocation tripeptides 

Notes

Acknowledgement

This project was funded by grants from The Novo Nordisk PhD plus Prize and the Carlsberg Foundation. The excellent technical support of Bettina Dinitzen, Birgitte Eltong and Maria D. Læssøe Pedersen is highly appreciated.

References

  1. 1.
    Adibi SA. Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest. 1971;50:2266–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368:563–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Ogihara H, Saito H, Shin BC, Terado T, Takenoshita S, Nagamachi Y et al. Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem Biophys Res Commun. 1996;220:848–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Addison JM, Burston D, Dalrymple JA, Matthews DM, Payne JW, Sleisenger MH et al. A common mechanism for transport of di- and tri-peptides by hamster jejunum in vitro. Clin Sci Mol Med. 1975;49:313–22.PubMedGoogle Scholar
  5. 5.
    Balimane PV, Tamai I, Guo A, Nakanishi T, Kitada H, Leibach FH et al. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem Biophys Res Commun. 1998;250:246–51.CrossRefPubMedGoogle Scholar
  6. 6.
    de Vrueh RL, Smith PL, Lee CP. Transport of L-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line, Caco-2. J Pharmacol Exp Ther. 1998;286:1166–70.PubMedGoogle Scholar
  7. 7.
    Nakashima E, Tsuji A, Mizuo H, Yamana T. Kinetics and mechanism of in vitro uptake of amino-beta-lactam antibiotics by rat small intestine and relation to the intact-peptide transport system. Biochem Pharmacol. 1984;33:3345–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Sugawara M, Huang W, Fei YJ, Leibach FH, Ganapathy V, Ganapathy ME. Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci. 2000;89:781–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Nielsen CU, Brodin B, Jorgensen FS, Frokjaer S, Steffansen B. Human peptide transporters: therapeutic applications. Expert Opin Ther Pat. 2002;12:1329–50.CrossRefGoogle Scholar
  10. 10.
    Nielsen CU, Vabeno J, Andersen R, Brodin B, Steffansen B. Recent advances in therapeutic applications of human peptide transporters. Expert Opin Ther Pat. 2005;15:153–66.CrossRefGoogle Scholar
  11. 11.
    Nielsen CU, Andersen R, Brodin B, Frokjaer S, Taub ME, Steffansen B. Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line. J Control Release. 2001;76:129–38.CrossRefPubMedGoogle Scholar
  12. 12.
    Jung D, Dorr A. Single-dose pharmacokinetics of valganciclovir in HIV- and CMV-seropositive subjects. J Clin Pharmacol. 1999;39:800–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Bailey PD, Boyd CA, Collier ID, George JP, Kellett GL, Meredith D, Morgan KM, Pettecrew R, Price RA. Affinity prediction for substrates of the peptide transporter PepT1. Chem Commun (Cambridge, UK) 2006;323–5Google Scholar
  14. 14.
    Biegel A, Gebauer S, Hartrodt B, Brandsch M, Neubert K, Thondorf I. Three-dimensional quantitative structure-activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem. 2005;48:4410–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Gebauer S, Knutter I, Hartrodt B, Brandsch M, Neubert K, Thondorf I. Three-dimensional quantitative structure–activity relationship analyses of peptide substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem. 2003;46:5725–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Andersen R, Jorgensen FS, Olsen L, Vabeno J, Thorn K, Nielsen CU et al. Development of a QSAR model for binding of tripeptides and tripeptidomimetics to the human intestinal di-/tripeptide transporter hPEPT1. Pharm Res. 2006;23:483–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Larsen SB, Jorgensen FS, Olsen L. QSAR models for the human H(+)/peptide symporter, hPEPT1: affinity prediction using alignment-independent descriptors. J Chem Inf Model. 2008;48:233–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Meredith D, Boyd CA, Bronk JR, Bailey PD, Morgan KM, Collier ID et al. 4-Aminomethylbenzoic acid is a non-translocated competitive inhibitor of the epithelial peptide transporter PepT1. J Physiol. 1998;512(Pt 3):629–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Eriksson AH, Elm PL, Begtrup M, Brodin B, Nielsen R, Steffansen B. Pyrimidine and nucleoside gamma-esters of L-Glu-Sar: synthesis, stability and interaction with hPEPT1. Eur J Pharm Sci. 2005;25:145–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Thomsen AE, Christensen MS, Bagger MA, Steffansen B. Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1: comparison of in vivo bioavailability in rats and transport in Caco-2 cells. Eur J Pharm Sci. 2004;23:319–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Knutter I, Theis S, Hartrodt B, Born I, Brandsch M, Daniel H et al. A novel inhibitor of the mammalian peptide transporter PEPT1. Biochemistry. 2001;40:4454–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Vig BS, Stouch TR, Timoszyk JK, Quan Y, Wall DA, Smith RL et al. Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. J Med Chem. 2006;49:3636–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Herrera-Ruiz D, Faria TN, Bhardwaj RK, Timoszyk J, Gudmundsson OS, Moench P et al. A novel hPepT1 stably transfected cell line: establishing a correlation between expression and function. Mol Pharm. 2004;1:136–44.CrossRefPubMedGoogle Scholar
  24. 24.
    Cruciani G, Pastor M, Guba W. VolSurf: a new tool for the pharmacokinetic optimization of lead compounds. Eur J Pharm Sci. 2000;11 Suppl 2:S29–39.CrossRefPubMedGoogle Scholar
  25. 25.
    Cruciani G, Crivori P, Carrupt P-A, Testa B. Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. J Mol Struct Theochem. 2000;503:17–30.CrossRefGoogle Scholar
  26. 26.
    Volsurf manual (VolSurf 4.1.4) (2008) In Molecular Discovery Ltd, PinnerGoogle Scholar
  27. 27.
    Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–108.CrossRefPubMedGoogle Scholar
  28. 28.
    Brandsch M, Knutter I, Thunecke F, Hartrodt B, Born I, Borner V et al. Decisive structural determinants for the interaction of proline derivatives with the intestinal H+/peptide symporter. Eur J Biochem. 1999;266:502–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Pedretti A, De LL, Marconi C, Negrisoli G, Aldini G, Vistoli G. Modeling of the intestinal peptide transporter hPepT1 and analysis of its transport capacities by docking and pharmacophore mapping. ChemMedChem. 2008;3:1913–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. Multi- and megavariate data analysis, part I. Umeå: Umetrics; 2006.Google Scholar
  31. 31.
    Brandsch M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol. 2009;5:887–905.CrossRefPubMedGoogle Scholar
  32. 32.
    Biegel A, Knutter I, Hartrodt B, Gebauer S, Theis S, Luckner P et al. The renal type H+/peptide symporter PEPT2: structure–affinity relationships. Amino Acids. 2006;31:137–56.CrossRefPubMedGoogle Scholar
  33. 33.
    Sala-Rabanal M, Loo DD, Hirayama BA, Turk E, Wright EM. Molecular interactions between dipeptides, drugs and the human intestinal H+-oligopeptide cotransporter hPEPT1. J Physiol. 2006;574:149–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Brandsch M, Ganapathy V, Leibach FH. H(+)-peptide cotransport in Madin–Darby canine kidney cells: expression and calmodulin-dependent regulation. Am J Physiol Ren Physiol. 1995;268:F391–7.Google Scholar
  35. 35.
    Terada T, Sawada K, Ito T, Saito H, Hashimoto Y, Inui KI. Functional expression of novel peptide transporter in renal basolateral membranes. Am J Physiol Ren Physiol. 2000;279:F851–7.Google Scholar
  36. 36.
    Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. Multi- and megavariate data analysis, part II. Umeå: Umetrics; 2006.Google Scholar
  37. 37.
    Krogsgaard-Larsen P, Liljefors T, Madsen U. Textbook of drug design and discovery. London: Taylor & Francis; 2002.Google Scholar
  38. 38.
    Dalmasso G, Charrier-Hisamuddin L, Thu Nguyen HT, Yan Y, Sitaraman S, Merlin D. PepT1-mediated tripeptide KPV uptake reduces intestinal inflammation. Gastroenterology. 2008;134:166–78.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Diana Højmark Omkvist
    • 1
  • Simon Birksø Larsen
    • 2
  • Carsten Uhd Nielsen
    • 1
  • Bente Steffansen
    • 1
  • Lars Olsen
    • 2
  • Flemming Steen Jørgensen
    • 2
  • Birger Brodin
    • 1
    Email author
  1. 1.Drug Transporters in ADME, Department of Pharmaceutics and Analytical ChemistryUniversity of CopenhagenCopenhagenDenmark
  2. 2.Biostructural Research, Department of Medicinal Chemistry, The Faculty of Pharmaceutical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations