The AAPS Journal

, Volume 12, Issue 3, pp 263–271 | Cite as

DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles

  • Yong Zhang
  • Meirong Huo
  • Jianping Zhou
  • Aifeng Zou
  • Weize Li
  • Chengli Yao
  • Shaofei Xie
Research Article


In recent years, several mathematical models have been developed for analysis of drug dissolution data, and many different mathematical approaches have been proposed to assess the similarity between two drug dissolution profiles. However, until now, no computer program has been reported for simplifying the calculations involved in the modeling and comparison of dissolution profiles. The purposes of this article are: (1) to describe the development of a software program, called DDSolver, for facilitating the assessment of similarity between drug dissolution data; (2) to establish a model library for fitting dissolution data using a nonlinear optimization method; and (3) to provide a brief review of available approaches for comparing drug dissolution profiles. DDSolver is a freely available program which is capable of performing most existing techniques for comparing drug release data, including exploratory data analysis, univariate ANOVA, ratio test procedures, the difference factor f1, the similarity factor f2, the Rescigno indices, the 90% confidence interval (CI) of difference method, the multivariate statistical distance method, the model-dependent method, the bootstrap f2 method, and Chow and Ki’s time series method. Sample runs of the program demonstrated that the results were satisfactory, and DDSolver could be served as a useful tool for dissolution data analysis.

Key words

computer program DDSolver dissolution similarity drug dissolution drug-release model 

Supplementary material

12248_2010_9185_MOESM1_ESM.doc (1.8 mb)
ESM 1(DOC 1853 kb) (7.6 mb)
ESM 2(ZIP 7.57 MB)
12248_2010_9185_MOESM3_ESM.xls (220 kb)
ESM 3(XLS 219 kb)
12248_2010_9185_MOESM4_ESM.doc (369 kb)
ESM 4(DOC 369 kb)


  1. 1.
    Lu DR, Abu-Izza K, Mao F. Nonlinear data fitting for controlled release devices: an integrated computer program. Int J Pharm. 1996;129:243–51.CrossRefGoogle Scholar
  2. 2.
    Phaechamud T. Variables influencing drug release from layered matrix system comprising hydroxypropyl methylcellulose. AAPS PharmSciTech. 2008;9:668–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Di Colo G, Baggiani A, Zambito Y, Mollica G, Geppi M, Serafini MF. A new hydrogel for the extended and complete prednisolone release in the GI tract. Int J Pharm. 2006;310:154–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309:44–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Orelli JV, Leuenberger H. Search for technological reasons to develop a capsule or a tablet formulation with respect to wettability and dissolution. Int J Pharm. 2004;287:135–45.CrossRefGoogle Scholar
  6. 6.
    Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.Google Scholar
  7. 7.
    Rescigno A. Bioequivalence. Pharm Res. 1992;9:925–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Polli JE, Rekhi GS, Augsburger LL, Shah VP. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J Pharm Sci. 1997;86:690–700.CrossRefPubMedGoogle Scholar
  9. 9.
    Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int J Pharm. 2000;209:57–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsong Y, Hammerstrom T, Sathe P, Shah VP. Statistical assessment of mean differences between two dissolution data sets. Drug Inf J. 1996;30:1105–12.Google Scholar
  11. 11.
    Sathe PM, Tsong Y, Shah VP. In-vitro dissolution profile comparison: statistics and analysis, model dependent approach. Pharm Res. 1996;13:1799–803.CrossRefPubMedGoogle Scholar
  12. 12.
    Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364:328–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Gurny R, Doelker E, Peppas NA. Modelling of sustained release of water-soluble drugs from porous, hydrophobic polymers. Biomaterials. 1982;3:27–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Borodkin S, Tucker FE. Linear drug release from laminated hydroxypropyl cellulose-polyvinyl acetate films. J Pharm Sci. 1975;64:1289–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Phaechamud T, Pitaksantayothin K, Kositwattanakoon P, Seehapong P, Jungvivatanavong S. Sustainable release of propranolol hydrochloride tablet using chitin as press-coating material. Silpakorn Univ Int J. 2002;2:147–59.Google Scholar
  18. 18.
    Tsong Y, Hammerstrom T, Chen JJ. Multipoint dissolution specification and acceptance sampling rule based on profile modeling and principal component analysis. J Biopharm Stat. 1997;7:423–39.CrossRefPubMedGoogle Scholar
  19. 19.
    Berry MR, Likar MD. Statistical assessment of dissolution and drug release profile similarity using a model-dependent approach. J Pharm Biomed Anal. 2007;45:194–200.CrossRefPubMedGoogle Scholar
  20. 20.
    Tarvainen M, Peltonen S, Mikkonen H, Elovaara M, Tuunainen M, Paronen P et al. Aqueous starch acetate dispersion as a novel coating material for controlled release products. J Control Release. 2004;96:179–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Ford JL, Mitchell K, Rowe P, Armstrong DJ, Elliott PNC, Rostron C et al. Mathematical modelling of drug release from hydroxypropylmethylcellulose matrices: effect of temperature. Int J Pharm. 1991;71:95–104.CrossRefGoogle Scholar
  22. 22.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.CrossRefGoogle Scholar
  23. 23.
    Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.PubMedGoogle Scholar
  24. 24.
    Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:923–31.CrossRefGoogle Scholar
  25. 25.
    Mollo AR, Corrigan OI. An investigation of the mechanism of release of the amphoteric drug amoxycillin from poly(d,l-lactide-co-glycolide) matrices. Pharm Dev Technol. 2002;7:333–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Enscore DJ, Hopfenberg HB, Stannett VT. Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres. Polymer. 1977;18:793–800.CrossRefGoogle Scholar
  27. 27.
    Pillay V, Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract. I. Comparison of pH-responsive drug release and associated kinetics. J Control Release. 1999;59:229–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Baker RW, Lonsdale HS. Controlled release of biologically active agents. New York: Plenum; 1974.Google Scholar
  29. 29.
    Makoid MC, Dufour A, Banakar UV. Modelling of dissolution behaviour of controlled release systems. STP Pharma. 1993;3:49–58.Google Scholar
  30. 30.
    Peppas NA, Sahlin JJ. A simple equation for the description of solute release III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.CrossRefGoogle Scholar
  31. 31.
    Langenbucher F. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24:979–81.PubMedGoogle Scholar
  32. 32.
    Koizumia T, Ritthidej GC, Phaechamud T. Mechanistic modeling of drug release from chitosan coated tablets. J Control Release. 2001;70:277–84.CrossRefGoogle Scholar
  33. 33.
    Costa FO, Sousa JJ, Pais AA, Formosinho SJ. Comparison of dissolution profiles of Ibuprofen pellets. J Control Release. 2003;89:199–212.CrossRefPubMedGoogle Scholar
  34. 34.
    Pabón CV, Frutos P, Lastres JL, Frutos G. Matrix tablets containing HPMC and polyamide 12: comparison of dissolution data using the Gompertz function. Drug Dev Ind Pharm. 1994;20:2509–18.CrossRefGoogle Scholar
  35. 35.
    Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–13.Google Scholar
  36. 36.
    Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987;1:365–74.PubMedGoogle Scholar
  37. 37.
    Akaike H. A new look at the statistical model identification. IEEE Trans Automat Control. 1974;19:716–23.CrossRefGoogle Scholar
  38. 38.
    MicroMath. Scientist User Handbook. Salt Lake: MicroMath; 1995.Google Scholar
  39. 39.
    Mollo AR, Corrigan OI. Effect of poly-hydroxy aliphatic ester polymer type on amoxycillin release from cylindrical compacts. Int J Pharm. 2003;268:71–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Mayer BX, Mensik C, Krishnaswami S, Hartmut D, Eichler HG, Schmetterer L et al. Pharmacokinetic-pharmacodynamic profile of systemic nitric oxide-synthase inhibition with L-NMMA in humans. Br J Clin Pharmacol. 1999;47:539–44.CrossRefPubMedGoogle Scholar
  41. 41.
    Yamashita F, Hashida M. Mechanistic and empirical modeling of skin permeation of drugs. Adv Drug Deliv Rev. 2003;55:1185–99.CrossRefPubMedGoogle Scholar
  42. 42.
    O'Hara T, Dunne A, Butler J, Devane J. A review of methods used to compare dissolution profile data. Pharm Sci Technol Today. 1998;1:214–23.CrossRefGoogle Scholar
  43. 43.
    FDA. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms. Rockville: FDA; 1997.Google Scholar
  44. 44.
    Liu JP, Ma MC, Chow SC. Statistical evaluation of similarity factor f2 as a criterion for assessment of similarity between dissolution profiles. Drug Inf J. 1997;31:1255–71.Google Scholar
  45. 45.
    Shah VP, Tsong Y, Sathe P, Liu JP. In vitro dissolution profile comparison–statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15:889–96.CrossRefPubMedGoogle Scholar
  46. 46.
    Chow SC, Ki YCF. Statistical comparison between dissolution profiles of drug products. J Biopharm Stat. 1997;7:241–58.CrossRefPubMedGoogle Scholar
  47. 47.
    Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17:811–22.CrossRefPubMedGoogle Scholar
  48. 48.
    Pinto JF, Podczeck F, Newton JM. The use of statistical moment analysis to elucidate the mechanism of release of a model drug from pellets produced by extrusion and spheronization. Chem Pharm Bull. 1997;45:171–80.Google Scholar
  49. 49.
    Podczeck F. Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int J Pharm. 1993;97:93–100.CrossRefGoogle Scholar
  50. 50.
    Brockmeier D. In vitro/in vivo correlation of dissolution using moments of dissolution and transit times. Acta Pharm Technol. 1986;32:164–74.Google Scholar
  51. 51.
    Rodriguez Cruz MS, Gonzalez Alonso I, Sanchez-Navarro A, Sayalero Marinero ML. In vitro study of the interaction between quinolones and polyvalent cations. Pharm Acta Helv. 1999;73:237–45.CrossRefPubMedGoogle Scholar
  52. 52.
    Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.PubMedGoogle Scholar
  53. 53.
    Gohel MC, Panchal MK. Comparison of in vitro dissolution profiles using a novel, model-independent approach. Pharm Technol. 2000;24:92–102.Google Scholar
  54. 54.
    Chow SC, Shao J. On the assessment of similarity for dissolution profiles of two drug products. J Biopharm Stat. 2002;12:311–21.CrossRefPubMedGoogle Scholar
  55. 55.
    Ma MC, Wang BB, Liu JP, Tsong Y. Assessment of similarity between dissolution profiles. J Biopharm Stat. 2000;10:229–49.CrossRefPubMedGoogle Scholar
  56. 56.
    Tsong Y, Sathe PM, Shah VP. In vitro dissolution profile comparison: Encyclopedia of Biopharmaceutical Statistics. London: Informa Healthcare; 2003. p. 456–62.Google Scholar
  57. 57.
    Adams E, Coomans D, Smeyers-Verbeke J, Massart DL. Application of linear mixed effects models to the evaluation of dissolution profiles. Int J Pharm. 2001;226:107–25.CrossRefPubMedGoogle Scholar
  58. 58.
    Comets E, Mentre F. Evaluation of tests based on individual versus population modeling to compare dissolution curves. J Biopharm Stat. 2001;11:107–23.CrossRefPubMedGoogle Scholar
  59. 59.
    Peh KK, Lim CP, Quek SS, Khoh KH. Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharm Res. 2000;17:1384–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Lee JC, Chen DT, Hung HN, Chen JJ. Analysis of drug dissolution data. Stat Med. 1999;18:799–814.CrossRefPubMedGoogle Scholar
  61. 61.
    Bartoszynski R, Powers JD, Herderick EE, Pultz JA. Statistical comparison of dissolution curves. Pharmacol Res. 2001;43:369–87.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Yong Zhang
    • 1
  • Meirong Huo
    • 1
  • Jianping Zhou
    • 1
  • Aifeng Zou
    • 1
  • Weize Li
    • 1
  • Chengli Yao
    • 1
  • Shaofei Xie
    • 2
  1. 1.Department of PharmaceuticsChina Pharmaceutical UniversityNanjingChina
  2. 2.Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Center for Instrumental AnalysisChina Pharmaceutical UniversityNanjingChina

Personalised recommendations