The AAPS Journal

, Volume 12, Issue 2, pp 181–187 | Cite as

Liposomal Simvastatin Attenuates Neointimal Hyperplasia in Rats

  • Eyal Afergan
  • Meital Ben David
  • Hila Epstein
  • Nickolay Koroukhov
  • Dalia Gilhar
  • Keren Rohekar
  • Haim D. Danenberg
  • Gershon Golomb
Research Article


Monocytes, macrophages, and inflammation play a key role in the process of neointimal proliferation and restenosis. The present study evaluated whether systemic and transient depletion of monocytes could be obtained by a single intravenous (IV) injection of simvastatin liposomes, for the inhibition of neointima formation. Balloon-injured carotid artery rats (n = 30) were randomly assigned to treatment groups of free simvastatin, simvastatin in liposomes (3 mg/kg), and saline (control). Stenosis and neointima to media ratio (N/M) were determined 14 days following single IV injection at the time of injury by morphometric analysis. Depletion of circulating monocytes was determined by flow cytometry analyzes of blood specimens. Inhibition of RAW264.7, J774, and THP-1 proliferation by simvastatin-loaded liposomes and free simvastatin was determined by the 3-(4, 5-dimethylthiazolyl-2)-2, 5- diphenyltetrazolium bromide assay. Simvastatin liposomes were successfully formulated and were found to be 1.5-2 times more potent than the free drug in suppressing the proliferation of monocytes/macrophages in cell cultures of RAW 264.7, J774, and THP-1. IV injection of liposomal simvastatin to carotid-injured rats (3 mg/kg, n = 4) resulted in a transient depletion of circulating monocytes, significantly more prolonged than that observed following treatment with free simvastatin. Administration to balloon-injured rats suppressed neointimal growth. N/M at 14 days was 1.56 ± 0.16 and 0.90 ± 0.12, control and simvastatin liposomes, respectively. One single systemic administration of liposomal simvastatin at the time of injury significantly suppresses neointimal formation in the rat model of restenosis, mediated via a partial and transient depletion of circulating monocytes.

Key words

drug delivery systems liposomes monocytes restenosis statins 


  1. 1.
    Toutouzas K, Colombo A, Stefanadis C. Inflammation and restenosis after percutaneous coronary interventions. Eur Heart J. 2004;25(19):1679–87.CrossRefPubMedGoogle Scholar
  2. 2.
    Dobesh PP, Stacy ZA, Ansara AJ, Enders JM. Drug-eluting stents: a mechanical and pharmacologic approach to coronary artery disease. Pharmacotherapy. 2004;24(11):1554–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Bavry AA, Kumbhani DJ, Helton TJ, Bhatt DL. Risk of thrombosis with the use of sirolimus-eluting stents for percutaneous coronary intervention (from registry and clinical trial data). Am J Cardiol. 2005;95(12):1469–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Bavry AA, Kumbhani DJ, Helton TJ, Borek PP, Mood GR, Bhatt DL. Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials. Am J Med. 2006;119(12):1056–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48(1):193–202.CrossRefPubMedGoogle Scholar
  6. 6.
    McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004;364(9444):1519–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Nilsen DW, Melberg T, Larsen AI, Barvik S, Bonarjee V. Late complications following the deployment of drug-eluting stents. Int J Cardiol. 2006;109(3):398–401.CrossRefPubMedGoogle Scholar
  8. 8.
    Rogers C, Edelman ER, Simon DI. A mAb to the beta2-leukocyte integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc Natl Acad Sci USA. 1998;95(17):10134–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Bayes-Genis A, Campbell JH, Carlson PJ, Holmes Jr DR, Schwartz RS. Macrophages, myofibroblasts and neointimal hyperplasia after coronary artery injury and repair. Atherosclerosis. 2002;163(1):89–98.CrossRefPubMedGoogle Scholar
  10. 10.
    Libby P, Schwartz D, Brogi E, Tanaka H, Clinton SK. A cascade model for restenosis. A special case of atherosclerosis progression. Circulation. 1992;86(6 Suppl):III47–52.PubMedGoogle Scholar
  11. 11.
    Welt FG, Tso C, Edelman ER, Kjelsberg MA, Paolini JF, Seifert P, et al. Leukocyte recruitment and expression of chemokines following different forms of vascular injury. Vasc Med. 2003;8(1):1–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Cohen-Sela E, Dangoor D, Epstein H, Danenberg HD, Golomb G, Gao J. Nanospheres of bisphosphonates attenuate intimal hyperplasia. J Nanosci Nanotech. 2006;6:3226–34.CrossRefGoogle Scholar
  13. 13.
    Cohen-Sela E, Rosenzweig O, Gao J, Epstein H, Gati I, Reich R, et al. Alendronate- loaded nanoparticles deplete monocytes and attenuate restenosis. J Controlled Rel. 2006;113(1):23–30.CrossRefGoogle Scholar
  14. 14.
    Danenberg HD, Fishbein I, Epstein H, Waltenberger J, Moerman E, Monkkonen J, et al. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon injury in the rat carotid artery. J Cardiovasc Pharmacol. 2003;42(5):671–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Danenberg HD, Fishbein I, Gao J, Monkkonen J, Reich R, Gati I, et al. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation. 2002;106(5):599–605.CrossRefPubMedGoogle Scholar
  16. 16.
    Danenberg HD, Golomb G, Groothuis A, Gao J, Epstein H, Swaminathan RV, et al. Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation. 2003;108(22):2798–804.CrossRefPubMedGoogle Scholar
  17. 17.
    Doggrell SA. Statins in the 21st century: end of the simple story? Expert Opin Investig Drugs. 2001;10(9):1755–66.CrossRefPubMedGoogle Scholar
  18. 18.
    Liao JK. Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol. 2002;86(1):5–18.CrossRefPubMedGoogle Scholar
  19. 19.
    Horlitz M, Sigwart U, Niebauer J. Fighting restenosis after coronary angioplasty: contemporary and future treatment options. Int J Cardiol. 2002;83(3):199–205.CrossRefPubMedGoogle Scholar
  20. 20.
    Indolfi C, Cioppa A, Stabile E, Di Lorenzo E, Esposito G, Pisani A, et al. Effects of hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin on smooth muscle cell proliferation in vitro and neointimal formation in vivo after vascular injury. J Am Coll Cardiol. 2000;35(1):214–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105(25):3017–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203(2):325–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Stenestrand U, Wallentin L. Early statin treatment following acute myocardial infarction and 1-year survival. JAMA. 2001;285(4):430–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Walter DH, Schachinger V, Elsner M, Mach S, Auch-Schwelk W, Zeiher AM. Effect of statin therapy on restenosis after coronary stent implantation. Am J Cardiol. 2000;85(8):962–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Bunch TJ, Muhlestein JB, Anderson JL, Horne BD, Bair TL, Jackson JD, et al. Effects of statins on six-month survival and clinical restenosis frequency after coronary stent deployment. Am J Cardiol. 2002;90(3):299–302.CrossRefPubMedGoogle Scholar
  26. 26.
    Horlitz M, Sigwart U, Niebauer J. Statins do not prevent restenosis after coronary angioplasty: where to go from here? Herz. 2001;26(2):119–28.CrossRefPubMedGoogle Scholar
  27. 27.
    Patti G, Pasceri V, Colonna G, Miglionico M, Fischetti D, Sardella G, et al. Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: results of the ARMYDA-ACS randomized trial. J Am Coll Cardiol. 2007;49(12):1272–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Weintraub WS, Boccuzzi SJ, Klein JL, Kosinski AS, King 3rd SB, Ivanhoe R, et al. Lack of effect of lovastatin on restenosis after coronary angioplasty. Lovastatin Restenosis Trial Study Group. N Engl J Med. 1994;331(20):1331–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Mulder HJ, Bal ET, Jukema JW, Zwinderman AH, Schalij MJ, van Boven AJ, et al. Pravastatin reduces restenosis two years after percutaneous transluminal coronary angioplasty (REGRESS trial). Am J Cardiol. 2000;86(7):742–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nature reviews. 2006;6(5):358–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen- containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13(4):581–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunomodulator. Nat Med. 2000;6(12):1399–402.CrossRefPubMedGoogle Scholar
  33. 33.
    Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87.CrossRefPubMedGoogle Scholar
  34. 34.
    Fildes JE, Shaw SM, Mitsidou A, Rogacev K, Leonard CT, Williams SG, et al. HMG- CoA reductase inhibitors deplete circulating classical and non-classical monocytes following human heart transplantation. Transpl Immunol. 2008;19(2):152–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Kim YC, Song SB, Lee MH, Kang KI, Lee H, Paik SG, et al. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells. Biochem Biophys Res Commun. 2006;339(3):1007–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Raz A, Bucana C, Fogler WE, Poste G, Fidler IJ. Biochemical, morphological, and ultrastructural studies on the uptake of liposomes by murine macrophages. Cancer Res. 1981;41(2):487–94.PubMedGoogle Scholar
  37. 37.
    Monkkonen J, Valjakka R, Hakasalo M, Urtti A. The effects of liposome surface charge and size on the intracellular delivery of clodronate and gallium in vitro. Int J Pharm. 1994;107:189–97.CrossRefGoogle Scholar
  38. 38.
    van Etten EW, ten Kate MT, Snijders SV, Bakker-Woudenberg IA. Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system. Antimicrob Agents Chemother. 1998;42(7):1677–81.PubMedGoogle Scholar
  39. 39.
    Patel HM, Moghimi SM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity. Adv Drug Deliv Rev. 1998;32(1–2):45–60.PubMedGoogle Scholar
  40. 40.
    Moghimi SM, Hunter AC. Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res. 2001;18(1):1–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.CrossRefPubMedGoogle Scholar
  42. 42.
    Epstein H, Gutman D, Cohen-Sela E, Haber E, Elmalak O, Koroukhov N, et al. Preparation of alendronate liposomes for enhanced stability and bioactivity: in vitro and in vivo characterization. AAPS J. 2008;10(4):505–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Afergan E, Epstein H, Koroukhov N, Klein M, Litchi A, Mishani E, et al. Biodistribution and imaging studies of 67 Ga-labeled liposomes in rabbits with a vascular injury. J Drug Deliv Sci Technol. 2009;19(4):263–8.Google Scholar
  44. 44.
    Afergan E, Epstein H, Dahan R, Koroukhov N, Rohekar K, Danenberg HD, et al. Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J Control Release. 2008;132(2):84–90.CrossRefPubMedGoogle Scholar
  45. 45.
    van Rooijen N, van Kesteren-Hendrikx E. “In vivo” depletion of macrophages by liposome-mediated suicide. Methods Enzymol. 2003;373:3–16.CrossRefPubMedGoogle Scholar
  46. 46.
    Epstein H, Berger V, Levi I, Eisenberg G, Koroukhov N, Gao J, et al. Nanosuspensions of alendronate with gallium or gadolinium attenuate neointimal hyperplasia in rats. J Controlled Rel. 2007;117(3):322–32.CrossRefGoogle Scholar
  47. 47.
    Hegyesi H, Csaba G. Time- and concentration-dependence of the growth-promoting activity of insulin and histamine in Tetrahymena. Application of the MTT method for the determination of cell proliferation in a protozoan model. Cell Biol Int. 1997;21(5):289–93.CrossRefPubMedGoogle Scholar
  48. 48.
    Golomb G, Fishbein I, Banai S, Mishaly D, Moscovitz D, Gertz SD, et al. Controlled delivery of a tyrphostin inhibits intimal hyperplasia in a rat carotid artery injury model. Atherosclerosis. 1996;125(2):171–82.CrossRefPubMedGoogle Scholar
  49. 49.
    Fishbein I, Waltenberger J, Banai S, Rabinovich L, Chorny M, Levitzki A, et al. Local delivery of platelet-derived growth factor receptor-specific tyrphostin inhibits neointimal formation in rats. Arterioscler Thromb Vasc Biol. 2000;20(3):667–76.PubMedGoogle Scholar
  50. 50.
    Schroit AJ, Madsen J, Nayar R. Liposome cell interactions: in vitro discrimination of uptake mechanism and in vivo targeting strategies to mononuclear phagocytes. Chem Phys Lipids. 1986;40(2–4):373–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Patel HM. Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit Rev Ther Drug Carrier Syst. 1992;9(1):39–90.PubMedGoogle Scholar
  52. 52.
    Rodrigueza WV, Pritchard PH, Hope MJ. The influence of size and composition on the cholesterol-mobilizing properties of liposomes in vivo. Biochim Biophys Acta. 1993;1153(1):9–19.CrossRefPubMedGoogle Scholar
  53. 53.
    Kao YJ, Juliano RL. Interactions of liposomes with the reticuloendothelial system. Effects of reticuloendothelial blockade on the clearance of large unilamellar vesicles. Biochim Biophys Acta. 1981;677(3–4):453–61.PubMedGoogle Scholar
  54. 54.
    Sato Y, Kiwada H, Kato Y. Effects of dose and vesicle size on the pharmacokinetics of liposomes. Chem Pharm Bull (Tokyo). 1986;34(10):4244–52.Google Scholar
  55. 55.
    Hanke H, Hassenstein S, Ulmer A, Kamenz J, Oberhoff M, Haase KK, et al. Accumulation of macrophages in the arterial vessel wall following experimental balloon angioplasty. Eur Heart J. 1994;15(5):691–8.PubMedGoogle Scholar
  56. 56.
    Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, et al. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation. 2001;104(18):2228–35.CrossRefPubMedGoogle Scholar
  57. 57.
    Fukuda D, Shimada K, Tanaka A, Kawarabayashi T, Yoshiyama M, Yoshikawa J. Circulating monocytes and in-stent neointima after coronary stent implantation. J Am Coll Cardiol. 2004;43(1):18–23.CrossRefPubMedGoogle Scholar
  58. 58.
    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation. 1994;90(2):775–8.PubMedGoogle Scholar
  59. 59.
    Haber E, Danenberg HD, Koroukhov N, Ron-El R, Golomb G, Schachter M. Peritoneal macrophage depletion by liposomal bisphosphonate attenuates endometriosis in the rat model. Hum Reprod. 2009;24(2):398–407.CrossRefPubMedGoogle Scholar
  60. 60.
    Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349(14):1315–23.CrossRefPubMedGoogle Scholar
  61. 61.
    Stone GW, Ellis SG, Cox DA, Hermiller J, O'Shaughnessy C, Mann JT, et al. A polymer- based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350(3):221–31.CrossRefPubMedGoogle Scholar
  62. 62.

Copyright information

© American Association of Pharmaceutical Scientists 2010

Authors and Affiliations

  • Eyal Afergan
    • 1
  • Meital Ben David
    • 1
  • Hila Epstein
    • 1
  • Nickolay Koroukhov
    • 1
  • Dalia Gilhar
    • 1
  • Keren Rohekar
    • 1
  • Haim D. Danenberg
    • 2
  • Gershon Golomb
    • 1
  1. 1.Department of Pharmaceutics, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of CardiologyHadassah Hebrew University HospitalJerusalemIsrael

Personalised recommendations