Compartmental Analysis and its Manifold Applications to Pharmacokinetics
Abstract
In this paper, I show how the concept of compartment evolved from the simple dilution of a substance in a physiological volume to its distribution in a network of interconnected spaces. The differential equations describing the fate of a substance in a living being can be solved, qualitatively and quantitatively, with the help of a number of mathematical techniques. A number of parameters of pharmacokinetic interest can be computed from the experimental data; often, the data available are not sufficient to determine some parameters, but it is possible to determine their range.
Key words
exit time flow graphs permanence time residence time tracer kinetics transfer function turnover timeNotes
Acknowledgment
I am grateful to Dr. Anthony Hunt, Department of Biopharmaceutical Sciences, University of California, San Francisco, for his help in preparing this manuscript.
Supplementary material
References
- 1.Widmark EMP, Tandberg J. Über die Bedingungen für die Akkumulation indifferenter Narkotiken. Theoretische Berechnungen. Biochem Z. 1924;147:358–69.Google Scholar
- 2.Gehlen W. Wirkungsstärke intravenös verabreichter Arzneimittel als Zeitfunktion. Arch Exp Path Pharmakol. 1933;171:541–6.CrossRefGoogle Scholar
- 3.Behnke AR, Thomson RM, et al. The rate of elimination of dissolved nitrogen in man in relation to the fat and water content of the body. Am J Physiol. 1935;114:137–46.Google Scholar
- 4.Teorell T. Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration. Arch Int Pharmacodyn Ther. 1937;57:205–25.Google Scholar
- 5.Teorell T. Kinetics of distribution of substances administered to the body. II. The intravascular modes of administration. Arch Int Pharmacodyn Ther. 1937;57:226–40.Google Scholar
- 6.Artom C, Sarzana G, Segrè E. Influence des grasses alimentaires sur la formation des phospholipides dans les tissues animaux (nouvelles recherches). Arch Int Physiol. 1938;47:245–76.CrossRefGoogle Scholar
- 7.Rescigno A. Foundations of pharmacokinetics. New York: Kluwer; 2003.Google Scholar
- 8.Hearon JZ. Theorems on linear systems. Ann N Y Acad Sci. 1963;108:36–68.CrossRefPubMedGoogle Scholar
- 9.von Bertalanffy L. General system theory. New York: George Braziller; 1968.Google Scholar
- 10.Mikusinski J. Operational calculus. London: Pergamon; 1959.Google Scholar
- 11.Erdelyi A. Operational calculus and generalized functions. New York: Holt, Rinehart and Winston; 1962.Google Scholar
- 12.Mason SJ. Feedback theory. Some properties of signal flow graphs. Proc IRE. 1953;41:1144–56.CrossRefGoogle Scholar
- 13.Rescigno A. Flow diagrams of multicompartment systems. Ann N Y Acad Sci. 1963;108:204–16.CrossRefPubMedGoogle Scholar
- 14.Laue R. Elemente der Graphentheorie und ihre Anwendung in den biologischen Wissenschaften. Leipzig: Akademische Verlaggesellschaft Geest & Portig; 1970.Google Scholar
- 15.Wilde O. The picture of Dorian Gray. New York: Everyman’s Library; 1930. Chapter III, p. 102.Google Scholar
- 16.Matthews CME. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957;2:36–53.CrossRefPubMedGoogle Scholar
- 17.Berman M, Schoenfeld R. Invariants in experimental data. J Appl Phys. 1956;27:1361–70.CrossRefGoogle Scholar
- 18.Rescigno A. On the use of pharmacokinetic models. Phys Med Biol. 2004;49:4657–76.CrossRefPubMedGoogle Scholar
- 19.Willems JC. Consequences of a dissipative inequality in the theory of dynamical systems. In: von Dixhoorn JJ, Evans FJ, editors. Physical structure in system theory. London: Academic; 1974. p. 193–218.Google Scholar
- 20.Goresky CA. A linear method for determining liver sinusoidal and extravascular volumes. Am J Physiol. 1963;204:626–40.PubMedGoogle Scholar
- 21.Rescigno A. The rise and fall of compartmental analysis. Pharmacol Res. 2001;44:337–42.CrossRefPubMedGoogle Scholar
- 22.Rescigno A, Beck JS. The use and abuse of models. J Pharmacokinet Biopharm. 1987;15:327–40.CrossRefPubMedGoogle Scholar
- 23.Mordenti J, Rescigno A. Estimation of permanence time, exit time, dilution factor, and steady-state volume of distribution. Pharm Res. 1992;9:17–25.CrossRefPubMedGoogle Scholar