Advertisement

The AAPS Journal

, 11:671 | Cite as

Nonviral Gene Delivery: Principle, Limitations, and Recent Progress

  • Mohammed S. Al-DosariEmail author
  • Xiang Gao
Review Article Theme: Emerging Drug Delivery Technologies

Abstract

Gene therapy is becoming a promising therapeutic modality for the treatment of genetic and acquired disorders. Nonviral approaches as alternative gene transfer vehicles to the popular viral vectors have received significant attention because of their favorable properties, including lack of immunogenicity, low toxicity, and potential for tissue specificity. Such approaches have been tested in preclinical studies and human clinical trials over the last decade. Although therapeutic benefit has been demonstrated in animal models, gene delivery efficiency of the nonviral approaches remains to be a key obstacle for clinical applications. This review focuses on existing and emerging concepts of chemical and physical methods for delivery of therapeutic nucleic acid molecules in vivo. The emphasis is placed on discussion about problems associated with current nonviral methods and recent efforts toward refinement of nonviral approaches.

Key words

gene delivery gene therapy lipoplex nonviral vectors polyplex transfection 

Notes

Acknowledgments

We are grateful to Dr. Fowzan S. Alkuraya for his critical reading of the manuscript.

References

  1. 1.
    Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs. 2000;60:249–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Villemejane J, Mir LM. Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol. 2009;157:207–19.CrossRefPubMedGoogle Scholar
  3. 3.
    Medina-Kauwe LK, Xie J, Hamm-Alvarez S. Intracellular trafficking of nonviral vectors. Gene Ther. 2005;12:1734–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Li W, Nicol F, Szoka FC Jr. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Deliv Rev. 2004;23:967–85.CrossRefGoogle Scholar
  5. 5.
    Xu Y, Szoka FC Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996;35:5616–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7:657–63.CrossRefPubMedGoogle Scholar
  7. 7.
    Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine–DNA polyplexes. J Biol Chem. 2003;278:44826–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Curiel DT, Agarwal S, Wagner E, Cotten M. Adenovirus enhancement of transferrin–polylysine-mediated gene delivery. Proc Natl Acad Sci USA. 1991;88:8850–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Kloeckner J, Prasmickaite L, Hogset A, Berg K, Wagner E. Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J Drug Target. 2004;12:205–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem. 2000;275:1625–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Bastos R, Pante N, Burke B. Nuclear pore complex proteins. Int Rev Cytol. 1995;162B:257–302.PubMedGoogle Scholar
  12. 12.
    Wente SR. Gatekeepers of the nucleus. Science. 2000;288:1374–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Dean DA, Strong DD, Zimmer WE. Nuclear entry of nonviral vectors. Gene Ther. 2005;12:881–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Bachand M, Trent AM, Bunker BC, Bachand GD. Physical factors affecting kinesin-based transport of synthetic nanoparticle cargo. J Nanosci Nanotechnol. 2005;5:718–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen HH, Ho YP, Jiang X, Mao HQ, Wang TH, Leong KW. Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum dot-FRET. Mol Ther. 2008;16:324–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H. Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull. 2007;30:751–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Yew NS, Wang KX, Przybylska M, Bagley RG, Stedman M, Marshall J, et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther. 1999;10:223–34.CrossRefPubMedGoogle Scholar
  18. 18.
    Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Long-term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Genet. 1992;1:363–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Al-Dosari MS, Knapp JE, Liu D. Hydrodynamic delivery. Adv Genet. 2005;54:65–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Loser P, Jennings GS, Strauss M, Sandig V. Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NF-kappa B. J Virol. 1998;72:180–90.PubMedGoogle Scholar
  21. 21.
    Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab. 2000;11:142–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Argyros O, Wong SP, Niceta M, Waddington SN, Howe SJ, Coutelle C, et al. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther. 2008;15:1593–605.CrossRefPubMedGoogle Scholar
  23. 23.
    Hibbitt OC, Harbottle RP, Waddington SN, Bursill CA, Coutelle C, Channon KM, et al. Delivery and long-term expression of a 135 kb LDLR genomic DNA locus in vivo by hydrodynamic tail vein injection. J Gene Med. 2007;9:488–97.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen ZY, Yant SR, He CY, Meuse L, Shen S, Kay MA. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther. 2001;3:403–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK. Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther. 2004;10:269–78.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8:495–500.CrossRefPubMedGoogle Scholar
  27. 27.
    Tanaka AS, Tanaka M, Komuro K. A highly efficient method for the site-specific integration of transfected plasmids into the genome of mammalian cells using purified retroviral integrase. Gene. 1998;216:67–76.CrossRefPubMedGoogle Scholar
  28. 28.
    Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet. 2000;25:35–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Calos MP. The phi C31 integrase system for gene therapy. Curr Gene Ther. 2006;6:633–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Sato Y, Yamauchi N, Takahashi M, Sasaki K, Fukaura J, Neda H, et al. In vivo gene delivery to tumor cells by transferrin–streptavidin–DNA conjugate. Faseb J. 2000;14:2108–18.CrossRefPubMedGoogle Scholar
  32. 32.
    Desigaux L, Gourden C, Bello-Roufai M, Richard P, Oudrhiri N, Lehn P, et al. Nonionic amphiphilic block copolymers promote gene transfer to the lung. Hum Gene Ther. 2005;16:821–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Freeman DJ, Niven RW. The influence of sodium glycocholate and other additives on the in vivo transfection of plasmid DNA in the lungs. Pharm Res. 1996;13:202–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Glasspool-Malone J, Malone RW. Marked enhancement of direct respiratory tissue transfection by aurintricarboxylic acid. Hum Gene Ther. 1999;10:1703–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Song K, Chang Y, Prud'homme GJ. Regulation of T-helper-1 versus T-helper-2 activity and enhancement of tumor immunity by combined DNA-based vaccination and nonviral cytokine gene transfer. Gene Ther. 2000;7:481–92.CrossRefPubMedGoogle Scholar
  36. 36.
    Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation. 2002;105:2012–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Wendell DM, Hemond BD, Hogan NC, Taberner AJ, Hunter IW. The effect of jet parameters on jet injection. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5005–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Ren S, Li M, Smith JM, DeTolla LJ, Furth PA. Low-volume jet injection for intradermal immunization in rabbits. BMC Biotechnol. 2002;2:1–6.CrossRefGoogle Scholar
  39. 39.
    Cartier R, Ren SV, Walther W, Stein U, Lewis A, Schlag PM, et al. In vivo gene transfer by low-volume jet injection. Anal Biochem. 2000;282:262–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Lysakowski C, Dumont L, Tramer MR, Tassonyi E. A needle-free jet-injection system with lidocaine for peripheral intravenous cannula insertion: a randomized controlled trial with cost-effectiveness analysis. Anesth Analg. 2003;96:215–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Stein U, Walther W, Stege A, Kaszubiak A, Fichtner I, Lage H. Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther. 2008;16:178–86.CrossRefPubMedGoogle Scholar
  42. 42.
    Walther W, Siegel R, Kobelt D, Knosel T, Dietel M, Bembenek A, et al. Novel jet-injection technology for nonviral intratumoral gene transfer in patients with melanoma and breast cancer. Clin Cancer Res. 2008;14:7545–53.CrossRefPubMedGoogle Scholar
  43. 43.
    Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6:1258–66.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 2004;11:675–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang G, Song YK, Liu D. Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Ther. 2000;7:1344–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Eastman SJ, Baskin KM, Hodges BL, Chu Q, Gates A, Dreusicke R, et al. Development of catheter-based procedures for transducing the isolated rabbit liver with plasmid DNA. Hum Gene Ther. 2002;13:2065–77.CrossRefPubMedGoogle Scholar
  47. 47.
    Suda T, Liu D. Hydrodynamic gene delivery: its principles and applications. Mol Ther. 2007;15:2063–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Al-Dosari MS, Knapp JE, Liu D. Activation of human CYP2C9 promoter and regulation by CAR and PXR in mouse liver. Mol Pharm. 2006;3:322–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Fabre JW, Grehan A, Whitehorne M, Sawyer GJ, Dong X, Salehi S, et al. Hydrodynamic gene delivery to the pig liver via an isolated segment of the inferior vena cava. Gene Ther. 2008;15:452–62.CrossRefPubMedGoogle Scholar
  50. 50.
    Suda T, Suda K, Liu D. Computer-assisted hydrodynamic gene delivery. Mol Ther. 2008;16:1098–104.CrossRefPubMedGoogle Scholar
  51. 51.
    Klein RM, Wolf ED, Wu R, Sanford JC. High-velocity microprojectiles for delivering nucleic acids into living cells. Biotechnology. 1992;24:384–6.PubMedGoogle Scholar
  52. 52.
    Uchida M, Natsume H, Kobayashi D, Sugibayashi K, Morimoto Y. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system. Biol Pharm Bull. 2002;25:690–3.CrossRefPubMedGoogle Scholar
  53. 53.
    Goudy KS, Wang B, Tisch R. Gene gun-mediated DNA vaccination enhances antigen-specific immunotherapy at a late preclinical stage of type 1 diabetes in nonobese diabetic mice. Clin Immunol. 2008;129:49–57.CrossRefPubMedGoogle Scholar
  54. 54.
    Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J. 1982;1:841–5.PubMedGoogle Scholar
  55. 55.
    Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta. 1991;1088:131–4.PubMedGoogle Scholar
  56. 56.
    Andre F, Mir LM. DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. 2004;11:S33–42.CrossRefPubMedGoogle Scholar
  57. 57.
    Sakai M, Nishikawa M, Thanaketpaisarn O, Yamashita F, Hashida M. Hepatocyte-targeted gene transfer by combination of vascularly delivered plasmid DNA and in vivo electroporation. Gene Ther. 2005;12:607–16.CrossRefPubMedGoogle Scholar
  58. 58.
    Marti G, Ferguson M, Wang J, Byrnes C, Dieb R, Qaiser R, et al. Electroporative transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther. 2004;11:1780–5.CrossRefPubMedGoogle Scholar
  59. 59.
    ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol. 2007;93:111–29.CrossRefPubMedGoogle Scholar
  60. 60.
    Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther. 1996;7:1339–46.CrossRefPubMedGoogle Scholar
  61. 61.
    Endoh M, Koibuchi N, Sato M, Morishita R, Kanzaki T, Murata Y, et al. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther. 2002;5:501–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol. 2005;45:329–35.CrossRefPubMedGoogle Scholar
  63. 63.
    Ogawa R, Kagiya G, Feril LB Jr, Nakaya N, Nozaki T, Fuse H, et al. Ultrasound mediated intravesical transfection enhanced by treatment with lidocaine or heat. J Urol. 2004;172:1469–73.CrossRefPubMedGoogle Scholar
  64. 64.
    Sheikov N, McDannold N, Sharma S, Hynynen K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol. 2008;34:1093–104.CrossRefPubMedGoogle Scholar
  65. 65.
    Tsunoda S, Mazda O, Oda Y, Iida Y, Akabame S, Kishida T, et al. Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochem Biophys Res Commun. 2005;336:118–27.CrossRefPubMedGoogle Scholar
  66. 66.
    Sheyn D, Kimelman-Bleich N, Pelled G, Zilberman Y, Gazit D, Gazit Z. Ultrasound-based nonviral gene delivery induces bone formation in vivo. Gene Ther. 2008;15:257–66.CrossRefPubMedGoogle Scholar
  67. 67.
    Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29:3477–96.CrossRefPubMedGoogle Scholar
  68. 68.
    Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA. 1987;84:7413–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Wasungu L, Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release. 2006;116:255–64.CrossRefPubMedGoogle Scholar
  70. 70.
    Li S, Rizzo MA, Bhattacharya S, Huang L. Characterization of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 1998;5:930–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Koltover I, Salditt T, Radler JO, Safinya CR. An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science. 1998;281:78–81.CrossRefPubMedGoogle Scholar
  72. 72.
    Kol MA, van Laak AN, Rijkers DT, Killian JA, de Kroon AI, de Kruijff B. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Biochemistry. 2003;42:231–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Sakurai F, Nishioka T, Yamashita F, Takakura Y, Hashida M. Effects of erythrocytes and serum proteins on lung accumulation of lipoplexes containing cholesterol or DOPE as a helper lipid in the single-pass rat lung perfusion system. Eur J Pharm Biopharm. 2001;52:165–72.CrossRefPubMedGoogle Scholar
  74. 74.
    Liu F, Qi H, Huang L, Liu D. Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 1997;4:517–23.CrossRefPubMedGoogle Scholar
  75. 75.
    Barron LG, Gagne L, Szoka FC Jr. Lipoplex-mediated gene delivery to the lung occurs within 60 minutes of intravenous administration. Hum Gene Ther. 1999;10:1683–94.CrossRefPubMedGoogle Scholar
  76. 76.
    Harvie P, Wong FM, Bally MB. Use of poly(ethylene glycol)–lipid conjugates to regulate the surface attributes and transfection activity of lipid–DNA particles. J Pharm Sci. 2000;89:652–63.CrossRefPubMedGoogle Scholar
  77. 77.
    Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther. 2002;1:337–46.PubMedGoogle Scholar
  78. 78.
    Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem. 2008;19:1327–38.CrossRefPubMedGoogle Scholar
  79. 79.
    Durcan N, Murphy C, Cryan SA. Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm. 2008;5:559–66.CrossRefPubMedGoogle Scholar
  80. 80.
    Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE. 2006;1e38:1–8.Google Scholar
  81. 81.
    Yew NS, Zhao H, Wu IH, Song A, Tousignant JD, Przybylska M, et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther. 2000;1:255–62.CrossRefPubMedGoogle Scholar
  82. 82.
    Blume G, Cevc G. Liposomes for the sustained drug release in vivo. Biochim Biophys Acta. 1990;1029:91–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.CrossRefPubMedGoogle Scholar
  84. 84.
    Yamashiro DJ, Fluss SR, Maxfield FR. Acidification of endocytic vesicles by an ATP-dependent proton pump. J Cell Biol. 1983;97:929–34.CrossRefPubMedGoogle Scholar
  85. 85.
    Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconj Chem. 2001;12:989–94.CrossRefGoogle Scholar
  87. 87.
    Goula D, Benoist C, Mantero S, Merlo G, Levi G, Demeneix BA. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 1998;5:1291–5.CrossRefPubMedGoogle Scholar
  88. 88.
    Wightman L, Kircheis R, Rössler V, Carotta S, Ruzicka R, Kursa M, et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med. 2001;3:362–72.CrossRefPubMedGoogle Scholar
  89. 89.
    Jia SF, Worth LL, Densmore CL, Xu B, Duan X, Kleinerman ES. Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clin Cancer Res. 2003;9:3462–8.PubMedGoogle Scholar
  90. 90.
    Hwang SJ, Davis ME. Cationic polymers for gene delivery: designs for overcoming barriers to systemic administration. Curr Opin Mol Ther. 2001;3:183–91.PubMedGoogle Scholar
  91. 91.
    Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev. 2006;58:467–86.CrossRefPubMedGoogle Scholar
  92. 92.
    Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem. 1987;262:4429–32.PubMedGoogle Scholar
  93. 93.
    Ziady AG, Gedeon CR, Miller T, Quan W, Payne JM, Hyatt SL, et al. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther. 2003;8:936–47.CrossRefPubMedGoogle Scholar
  94. 94.
    Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJ, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther. 2004;15:1255–69.CrossRefPubMedGoogle Scholar
  95. 95.
    Yamagata M, Kawano T, Shiba K, Mori T, Katayama Y, Niidome T. Structural advantage of dendritic poly(L-lysine) for gene delivery into cells. Bioorg Med Chem. 2007;15:526–32.CrossRefPubMedGoogle Scholar
  96. 96.
    Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. AAPS J. 2007;9:92–104.CrossRefGoogle Scholar
  97. 97.
    Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed Engl. 2008;47:1382–95.CrossRefPubMedGoogle Scholar
  98. 98.
    Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vision Res. 2008;48:319–24.CrossRefPubMedGoogle Scholar
  99. 99.
    Davis PB, Cooper MJ. Vectors for airway gene delivery. AAPS J. 2007;9:11–7.CrossRefGoogle Scholar
  100. 100.
    Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine. 2008;3:311–21.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  1. 1.Department of Pharmacognosy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Pharmaceutical Sciences, School of PharmacyUniversity of PittsburghPittsburghUSA

Personalised recommendations