Skip to main content

Advertisement

Log in

Targeted Delivery Systems for Oligonucleotide Therapeutics

  • Review Article
  • Theme: Emerging Drug Delivery Technologies
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Oligonucleotides including antisense oligonucleotides and siRNA are emerging as promising therapeutic agents against a variety of diseases. Effective delivery of these molecules is critical to their successful clinical application. Targeted systems can greatly improve the efficiency and specificity of oligonucleotides delivery. Meanwhile, an effective delivery system must successfully overcome a multitude of biological barriers to enable the oligonucleotides to reach the site of action and access their biological targets. Several delivery strategies based on different platform technologies and different targeting ligands have been developed to achieve these objectives. This review aims at providing a summary and perspective on recent progress in this very active area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Viel, R. Boisgard, B. Kuhnast, B. Jego, K. Siquier-Pernet, F. Hinnen, F. Dolle, and B. Tavitian. Molecular imaging study on in vivo distribution and pharmacokinetics of modified small interfering RNAs (siRNAs). Oligonucleotides. 18:201–212 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. T. Masui, R. Hosotani, D. Ito, K. Kami, M. Koizumi, T. Mori, E. Toyoda, S. Nakajima, Y. Miyamoto, K. Fujimoto, and R. Doi. Bcl-XL antisense oligonucleotides coupled with antennapedia enhances radiation-induced apoptosis in pancreatic cancer. Surgery. 140:149–160 (2006).

    Article  PubMed  Google Scholar 

  3. D. V. Morrissey, J. A. Lockridge, L. Shaw, K. Blanchard, K. Jensen, W. Breen, K. Hartsough, L. Machemer, S. Radka, V. Jadhav, N. Vaish, S. Zinnen, C. Vargeese, K. Bowman, C. S. Shaffer, L. B. Jeffs, A. Judge, I. MacLachlan, and B. Polisky. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23:1002–1007 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. T. S. Zimmermann, A. C. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N. Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K. Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. Rohl, S. Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J. Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manoharan, H. P. Vornlocher, and I. MacLachlan. RNAi-mediated gene silencing in non-human primates. Nature. 441:111–114 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. B. Roehr. Fomivirsen approved for CMV retinitis. J. Int. Assoc. Physicians AIDS Care. 4:14–16 (1998).

    PubMed  CAS  Google Scholar 

  6. B. Jahrsdorfer, R. Jox, L. Muhlenhoff, K. Tschoep, A. Krug, S. Rothenfusser, G. Meinhardt, B. Emmerich, S. Endres, and G. Hartmann. Modulation of malignant B cell activation and apoptosis by bcl-2 antisense ODN and immunostimulatory CpG ODN. J. Leukoc. Biol. 72:83–92 (2002).

    PubMed  CAS  Google Scholar 

  7. V. Gekeler, P. Gimmnich, H. P. Hofmann, C. Grebe, M. Rommele, A. Leja, M. Baudler, L. Benimetskaya, B. Gonser, U. Pieles, T. Maier, T. Wagner, K. Sanders, J. F. Beck, G. Hanauer, and C. A. Stein. G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice. Oligonucleotides. 16:83–93 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. C. D. Novina, and P. A. Sharp. The RNAi revolution. Nature. 430:161–164 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. D. M. Dykxhoorn, and J. Lieberman. Knocking down disease with siRNAs. Cell. 126:231–235 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. T. Aboul-Fadl. Antisense oligonucleotides: the state of the art. Curr. Med. Chem. 12:2193–2214 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. S. Agrawal. Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim. Biophys. Acta. 1489:53–68 (1999).

    PubMed  CAS  Google Scholar 

  12. J. Kurreck. Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270:1628–1644 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31:589–595 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. A. L. Cardoso, S. Simoes, L. P. de Almeida, J. Pelisek, C. Culmsee, E. Wagner, and M. C. Pedroso de Lima. siRNA delivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J. Gene Med. 9:170–183 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. L. Aagaard, and J. J. Rossi. RNAi therapeutics: principles, prospects and challenges. Adv. Drug Deliv. Rev. 59:75–86 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. R. Juliano, M. R. Alam, V. Dixit, and H. Kang. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36:4158–4171 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. J. N. Moreira, A. Santos, and S. Simoes. Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev. Recent Clin. Trials. 1:217–235 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. X. Wei, G. Dai, G. Marcucci, Z. Liu, D. Hoyt, W. Blum, and K. K. Chan. A specific picomolar hybridization-based ELISA assay for the determination of phosphorothioate oligonucleotides in plasma and cellular matrices. Pharm. Res. 23:1251–1264 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. S. Agrawal, J. Temsamani, and J. Y. Tang. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. U. S. A. 88:7595–7599 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. S. Agrawal, J. Temsamani, W. Galbraith, and J. Tang. Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet. 28:7–16 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. A. A. Levin. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta. 1489:69–84 (1999).

    PubMed  CAS  Google Scholar 

  22. L. Wang, R. K. Prakash, C. A. Stein, R. K. Koehn, and D. E. Ruffner. Progress in the delivery of therapeutic oligonucleotides: organ/cellular distribution and targeted delivery of oligonucleotides in vivo. Antisense Nucleic Acid Drug Dev. 13:169–189 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. D. A. Braasch, Z. Paroo, A. Constantinescu, G. Ren, O. K. Oz, R. P. Mason, and D. R. Corey. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14:1139–1143 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. D. W. Bartlett, H. Su, I. J. Hildebrandt, W. A. Weber, and M. E. Davis. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104:15549–15554 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. R. L. Juliano. Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Curr. Opin. Mol. Ther. 7:132–136 (2005).

    PubMed  CAS  Google Scholar 

  26. J. J. Turner, S. Jones, M. M. Fabani, G. Ivanova, A. A. Arzumanov, and M. J. Gait. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol. Dis. 38:1–7 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. T. C. Chu, K. Y. Twu, A. D. Ellington, and M. Levy. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34:e73 (2006).

    Article  PubMed  Google Scholar 

  28. K. Kataoka, K. Itaka, N. Nishiyama, Y. Yamasaki, M. Oishi, and Y. Nagasaki. Smart polymeric micelles as nanocarriers for oligonucleotides and siRNA delivery. Nucleic Acids Symp. Ser. (Oxf). 49:17–18 (2005).

    Article  Google Scholar 

  29. A. R. de Fougerolles. Delivery vehicles for small interfering RNA in vivo. Hum. Gene Ther. 19:125–132 (2008).

    Article  PubMed  Google Scholar 

  30. E. Fattal, and A. Bochot. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int. J. Pharm. 364(2):237–248 (2008).

    Article  PubMed  CAS  Google Scholar 

  31. M. A. Behlke. Progress towards in vivo use of siRNAs. Mol. Ther. 13:644–670 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. S. Kawakami, Y. Higuchi, and M. Hashida. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J. Pharm. Sci. 97:726–745 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. S. D. Li, and L. Huang. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol. Pharm. 3:579–588 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. D. Peer, E. J. Park, Y. Morishita, C. V. Carman, and M. Shimaoka. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science. 319:627–630 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, R. K. Pandey, T. Racie, K. G. Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan, and H. P. Vornlocher. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432:173–178 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. C. Wolfrum, S. Shi, K. N. Jayaprakash, M. Jayaraman, G. Wang, R. K. Pandey, K. G. Rajeev, T. Nakayama, K. Charrise, E. M. Ndungo, T. Zimmermann, V. Koteliansky, M. Manoharan, and M. Stoffel. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25:1149–1157 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. S. A. Moschos, S. W. Jones, M. M. Perry, A. E. Williams, J. S. Erjefalt, J. J. Turner, P. J. Barnes, B. S. Sproat, M. J. Gait, and M. A. Lindsay. Lung delivery studies using siRNA conjugated to TAT(48–60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug. Chem. 18:1450–1459 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. K. Nishina, T. Unno, Y. Uno, T. Kubodera, T. Kanouchi, H. Mizusawa, and T. Yokota. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol. Ther. 16:734–740 (2008).

    Article  PubMed  CAS  Google Scholar 

  39. X. B. Zhao, and R. J. Lee. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv. Drug Deliv. Rev. 56:1193–1204 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. P. S. Low, W. A. Henne, and D. D. Doorneweerd. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc. Chem. Res. 41:120–129 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. X. Zhao, H. Li, and R. J. Lee. Targeted drug delivery via folate receptors. Expert Opin. Drug Deliv. 5:309–319 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. A. S. Rait, K. F. Pirollo, L. Xiang, D. Ulick, and E. H. Chang. Tumor-targeting, systemically delivered antisense HER-2 chemosensitizes human breast cancer xenografts irrespective of HER-2 levels. Mol. Med. 8:475–486 (2002).

    PubMed  CAS  Google Scholar 

  43. W. Zhou, X. Yuan, A. Wilson, L. Yang, M. Mokotoff, B. Pitt, and S. Li. Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. Bioconjug. Chem. 13:1220–1225 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. S. H. Kim, J. H. Jeong, H. Mok, S. H. Lee, S. W. Kim, and T. G. Park. Folate receptor targeted delivery of polyelectrolyte complex micelles prepared from ODN-PEG-folate conjugate and cationic lipids. Biotechnol. Prog. 23:232–237 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. K. Zhang, Q. Wang, Y. Xie, G. Mor, E. Sega, P. S. Low, and Y. Huang. Receptor-mediated delivery of siRNAs by tethered nucleic acid base-paired interactions. Rna. 14:577–583 (2008).

    Article  PubMed  CAS  Google Scholar 

  46. Z. M. Qian, H. Li, H. Sun, and K. Ho. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev. 54:561–587 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. T. R. Daniels, T. Delgado, G. Helguera, and M. L. Penichet. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immunol. 121:159–176 (2006).

    Article  PubMed  CAS  Google Scholar 

  48. R. J. Boado. Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm. Res. 24:1772–1787 (2007).

    Article  PubMed  CAS  Google Scholar 

  49. J. D. Heidel, Z. Yu, J. Y. Liu, S. M. Rele, Y. Liang, R. K. Zeidan, D. J. Kornbrust, and M. E. Davis. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. U. S. A. 104:5715–5721 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. S. Hu-Lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65:8984–8992 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. K. F. Pirollo, A. Rait, Q. Zhou, S. H. Hwang, J. A. Dagata, G. Zon, R. I. Hogrefe, G. Palchik, and E. H. Chang. Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res. 67:2938–2943 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. N. Tietze, J. Pelisek, A. Philipp, W. Roedl, T. Merdan, P. Tarcha, M. Ogris, and E. Wagner. Induction of apoptosis in murine neuroblastoma by systemic delivery of transferrin-shielded siRNA polyplexes for downregulation of RAN. Oligonucleotides. 18:161–174 (2008).

    Article  PubMed  CAS  Google Scholar 

  53. J. Christiansen, and A. K. Rajasekaran. Biological impediments to monoclonal antibody-based cancer immunotherapy. Mol. Cancer Ther. 3:1493–1501 (2004).

    PubMed  CAS  Google Scholar 

  54. M. Szardenings. Phage display of random peptide libraries: applications, limits, and potential. J Recept. Signal. Transduct. Res. 23:307–349 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. V. Petrenko. Evolution of phage display: from bioactive peptides to bioselective nanomaterials. Expert. Opin. Drug Deliv. 5:825–836 (2008).

    Article  PubMed  CAS  Google Scholar 

  56. P. Sapra, and T. M. Allen. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res. 42:439–462 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. Y. Ikeda, and K. Taira. Ligand-targeted delivery of therapeutic siRNA. Pharm. Res. 23:1631–1640 (2006).

    Article  PubMed  CAS  Google Scholar 

  58. S. Sofou, and G. Sgouros. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin. Drug Deliv. 5:189–204 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. E. Song, P. Zhu, S. K. Lee, D. Chowdhury, S. Kussman, D. M. Dykxhoorn, Y. Feng, D. Palliser, D. B. Weiner, P. Shankar, W. A. Marasco, and J. Lieberman. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23:709–717 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. D. Peer, P. Zhu, C. V. Carman, J. Lieberman, and M. Shimaoka. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. U. S. A. 104:4095–4100 (2007).

    Article  PubMed  CAS  Google Scholar 

  61. D. B. Kirpotin, D. C. Drummond, Y. Shao, M. R. Shalaby, K. Hong, U. B. Nielsen, J. D. Marks, C. C. Benz, and J. W. Park. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66:6732–6740 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. D. D. Stuart, G. Y. Kao, and T. M. Allen. A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1. Cancer Gene Ther. 7:466–475 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. G. Pagnan, D. D. Stuart, F. Pastorino, L. Raffaghello, P. G. Montaldo, T. M. Allen, B. Calabretta, and M. Ponzoni. Delivery of c-myb antisense oligodeoxynucleotides to human neuroblastoma cells via disialoganglioside GD(2)-targeted immunoliposomes: antitumor effects. J. Natl. Cancer Inst. 92:253–261 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. B. R. Meade, and S. F. Dowdy. Exogenous siRNA delivery using peptide transduction domains/cell penetrating peptides. Adv. Drug Deliv. Rev. 59:134–140 (2007).

    Article  PubMed  CAS  Google Scholar 

  65. M. E. Martin, and K. G. Rice. Peptide-guided gene delivery. Aaps J. 9:E18–E29 (2007).

    Article  PubMed  CAS  Google Scholar 

  66. Y. L. Chiu, A. Ali, C. Y. Chu, H. Cao, and T. M. Rana. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11:1165–1175 (2004).

    Article  PubMed  CAS  Google Scholar 

  67. R. M. Schiffelers, A. Ansari, J. Xu, Q. Zhou, Q. Tang, G. Storm, G. Molema, P. Y. Lu, P. V. Scaria, and M. C. Woodle. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32:e149 (2004).

    Article  PubMed  Google Scholar 

  68. P. Kumar, H. Wu, J. L. McBride, K. E. Jung, M. H. Kim, B. L. Davidson, S. K. Lee, P. Shankar, and N. Manjunath. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 448:39–43 (2007).

    Article  PubMed  CAS  Google Scholar 

  69. J. O. McNamara 2nd, E. R. Andrechek, Y. Wang, K. D. Viles, R. E. Rempel, E. Gilboa, B. A. Sullenger, and P. H. Giangrande. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24:1005–1015 (2006).

    Article  PubMed  CAS  Google Scholar 

  70. J. Zhou, H. Li, S. Li, J. Zaia, and J. J. Rossi. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol. Ther. 16:1481–1489 (2008).

    Article  PubMed  CAS  Google Scholar 

  71. M. Oishi, Y. Nagasaki, N. Nishiyama, K. Itaka, M. Takagi, A. Shimamoto, Y. Furuichi, and K. Kataoka. Enhanced growth inhibition of hepatic multicellular tumor spheroids by lactosylated poly(ethylene glycol)-siRNA conjugate formulated in PEGylated polyplexes. ChemMedChem. 2:1290–1297 (2007).

    Article  PubMed  CAS  Google Scholar 

  72. M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, and K. Kataoka. Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127:1624–1625 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. S. Chono, S. D. Li, C. C. Conwell, and L. Huang. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control Release 131(1):64–69 (2008).

    Google Scholar 

  74. S. D. Li, Y. C. Chen, M. J. Hackett, and L. Huang. Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol. Ther. 16:163–169 (2008).

    Article  PubMed  CAS  Google Scholar 

  75. S. D. Li, S. Chono, and L. Huang. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol. Ther. 16:942–946 (2008).

    Article  PubMed  CAS  Google Scholar 

  76. Y. Sato, K. Murase, J. Kato, M. Kobune, T. Sato, Y. Kawano, R. Takimoto, K. Takada, K. Miyanishi, T. Matsunaga, T. Takayama, and Y. Niitsu. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26:431–442 (2008).

    Article  PubMed  CAS  Google Scholar 

  77. L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93:1980–1992 (2004).

    Article  PubMed  CAS  Google Scholar 

  78. S. D. Li, and L. Huang. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5:496–504 (2008).

    Article  PubMed  CAS  Google Scholar 

  79. S. T. Crooke, M. J. Graham, J. E. Zuckerman, D. Brooks, B. S. Conklin, L. L. Cummins, M. J. Greig, C. J. Guinosso, D. Kornbrust, M. Manoharan, H. M. Sasmor, T. Schleich, K. L. Tivel, and R. H. Griffey. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J. Pharm. Exp. Ther. 277:923–937 (1996).

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSF grant EEC-0425626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lee.

Additional information

Guest Editor: Dexi Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Zhao, X., Lee, L.J. et al. Targeted Delivery Systems for Oligonucleotide Therapeutics. AAPS J 11, 195–203 (2009). https://doi.org/10.1208/s12248-009-9096-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9096-1

Key words

Navigation