The AAPS Journal

, Volume 11, Issue 1, pp 167–177 | Cite as

Nicotine is a Selective Pharmacological Chaperone of Acetylcholine Receptor Number and Stoichiometry. Implications for Drug Discovery

  • Henry A. Lester
  • Cheng Xiao
  • Rahul Srinivasan
  • Cagdas D. Son
  • Julie Miwa
  • Rigo Pantoja
  • Matthew R. Banghart
  • Dennis A. Dougherty
  • Alison M. Goate
  • Jen C. Wang
Mini-Review Theme: NIDA Symposium: Drugs of Abuse: Cutting-edge Research Technologies

Abstract

The acronym SePhaChARNS, for “selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry,” is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes “upregulation” of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are α4β2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson’s disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.

Key words

ADNFLE dopamine GABA proteostasis upregulation 

References

  1. 1.
    R. D. Schwartz, and K. J. Kellar. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science. 220:214–216 (1983).PubMedGoogle Scholar
  2. 2.
    M. J. Marks, J. B. Burch, and A. C. Collins. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther. 226:817–825 (1983).PubMedGoogle Scholar
  3. 3.
    H. N. Nguyen, B. A. Rasmussen, and D. C. Perry. Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J Pharmacol Exp Ther. 307:1090–1097 (2003).PubMedGoogle Scholar
  4. 4.
    H. N. Nguyen, B. A. Rasmussen, and D. C. Perry. Binding and functional activity of nicotinic cholinergic receptors in selected rat brain regions are increased following long-term but not short-term nicotine treatment. J Neurochem. 90:40–49 (2004).PubMedGoogle Scholar
  5. 5.
    R. Nashmi, C. Xiao, P. Deshpande, S. Mckinney, S. R. Grady, P. Whiteaker, Q. Huang, T. Mcclure-Begley, J. M. Lindstrom, C. Labarca, A. C. Collins, M. J. Marks, and H. A. Lester. Chronic nicotine cell specifically upregulates functional α4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci. 27:8202–8218 (2007).PubMedGoogle Scholar
  6. 6.
    C. R. Breese, M. J. Marks, J. Logel, C. E. Adams, B. Sullivan, A. C. Collins, and S. Leonard. Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exl Ther. 282:7–13 (1997).Google Scholar
  7. 7.
    M. Mamede, K. Ishizu, M. Ueda, T. Mukai, Y. Iida, H. Kawashima, H. Fukuyama, K. Togashi, and H. Saji. Temporal change in human nicotinic acetylcholine receptor after smoking cessation: 5IA SPECT study. J Nucl Med. 48:1829–1835 (2007).PubMedGoogle Scholar
  8. 8.
    D. C. Perry, M. I. Davila-Garcia, C. A. Stockmeier, and K. J. Kellar. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther. 289:1545–1552 (1999).PubMedGoogle Scholar
  9. 9.
    J. K. Staley, S. Krishnan-Sarin, K. P. Cosgrove, E. Krantzler, E. Frohlich, E. Perry, J. A. Dubin, K. Estok, E. Brenner, R. M. Baldwin, G. D. Tamagnan, J. P. Seibyl, P. Jatlow, M. R. Picciotto, E. D. London, S. O'malley, and C. H. Van Dyck. Human tobacco smokers in early abstinence have higher levels of β2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci. 26:8707–8714 (2006).PubMedGoogle Scholar
  10. 10.
    B. Buisson, and D. Bertrand. Nicotine addiction: the possible role of functional upregulation. Trends Pharmacol Sci. 23:130–136 (2002).PubMedGoogle Scholar
  11. 11.
    C. L. Gentry, and R. J. Lukas. Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord. 1:359–385 (2002).PubMedGoogle Scholar
  12. 12.
    A. Tapper, S. Mckinney, M. Marks, and H. Lester. Nicotine responses in hypersensitive and knockout α4 mice account for tolerance to both hypothermia and locomotor suppression in wild-type mice. Physiol Genomics. 3:422–428 (2007).Google Scholar
  13. 13.
    R. Salas, F. Pieri, and M. De Biasi. Decreased signs of nicotine withdrawal in mice null for the β4 nicotinic acetylcholine receptor subunit. J Neurosci. 24:10035–10039 (2004).PubMedGoogle Scholar
  14. 14.
    K. J. Jackson, B. R. Martin, J. P. Changeux, and M. I. Damaj. Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther. 325:302–312 (2008).PubMedGoogle Scholar
  15. 15.
    B. Ritz, A. Ascherio, H. Checkoway, K. S. Marder, L. M. Nelson, W. A. Rocca, G. W. Ross, D. Strickland, S. K. Van Den Eeden, and J. Gorell. Pooled analysis of tobacco use and risk of Parkinson disease. Arch Neurol. 64:990–997 (2007).PubMedGoogle Scholar
  16. 16.
    C. M. Tanner, S. M. Goldman, D. A. Aston, R. Ottman, J. Ellenberg, R. Mayeux, and J. W. Langston. Smoking and Parkinson's disease in twins. Neurology. 58:581–588 (2002).PubMedGoogle Scholar
  17. 17.
    W. K. Scott, F. Zhang, J. M. Stajich, B. L. Scott, M. A. Stacy, and J. M. Vance. Family-based case-control study of cigarette smoking and Parkinson disease. Neurology. 64:442–447 (2005).PubMedGoogle Scholar
  18. 18.
    K. Wirdefeldt, M. Gatz, Y. Pawitan, and N. L. Pedersen. Risk and protective factors for Parkinson's disease: a study in Swedish twins. Ann Neurol. 57:27–33 (2005).PubMedGoogle Scholar
  19. 19.
    M. Quik. Smoking, nicotine and Parkinson’s disease. Trends Neurosci. 27:561–568 (2004).PubMedGoogle Scholar
  20. 20.
    M. Quik, M. O'neill, and X. A. Perez. Nicotine neuroprotection against nigrostriatal damage: importance of the animal model. Trends Pharmacol Sci. 28:229–235 (2007).PubMedGoogle Scholar
  21. 21.
    M. Khwaja, A. Mccormack, J. M. Mcintosh, D. A. Di Monte, and M. Quik. Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to α6β2* nAChRs. J Neurochem. 100:180–190 (2007).PubMedGoogle Scholar
  22. 22.
    R. E. Ryan, S. A. Ross, J. Drago, and R. E. Loiacono. Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in α4 nicotinic receptor subunit knockout mice. Br J Pharmacol. 132:1650–1656 (2001).PubMedGoogle Scholar
  23. 23.
    A. M. Janson, K. Fuxe, E. Sundstrom, L. F. Agnati, and M. Goldstein. Chronic nicotine treatment partly protects against the 1-methyl-4-phenyl-2,3,6-tetrahydropyridine-induced degeneration of nigrostriatal dopamine neurons in the black mouse. Acta Physiol Scand. 132:589–591 (1988).PubMedGoogle Scholar
  24. 24.
    G. Costa, J. A. Abin-Carriquiry, and F. Dajas. Nicotine prevents striatal dopamine loss produced by 6-hydroxydopamine lesion in the substantia nigra. Brain Res. 888:336–342 (2001).PubMedGoogle Scholar
  25. 25.
    D. L. Marshall, P. H. Redfern, and S. Wonnacott. Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem. 68:1511–1519 (1997).PubMedCrossRefGoogle Scholar
  26. 26.
    N. P. Visanji, S. N. Mitchell, M. J. O'neill, and S. Duty. Chronic pre-treatment with nicotine enhances nicotine-evoked striatal dopamine release and α6 and β3 nicotinic acetylcholine receptor subunit mRNA in the substantia nigra pars compacta of the rat. Neuropharmacology. 50:36–46 (2006).PubMedGoogle Scholar
  27. 27.
    O. K. Steinlein, J. C. Mulley, P. Propping, R. H. Wallace, H. A. Phillips, G. R. Sutherland, I. E. Scheffer, and S. F. Berkovic. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 11:201–203 (1995).PubMedGoogle Scholar
  28. 28.
    J. O. Willoughby, K. J. Pope, and V. Eaton. Nicotine as an antiepileptic agent in ADNFLE: an N-of-one study. Epilepsia. 44:1238–1240 (2003).PubMedGoogle Scholar
  29. 29.
    E. Brodtkorb, and F. Picard. Tobacco habits modulate autosomal dominant nocturnal frontal lobe epilepsy. Epilepsy Behav. 9:515–520 (2006).PubMedGoogle Scholar
  30. 30.
    D. Bertrand, F. Picard, S. Le Hellard, S. Weiland, I. Favre, H. Phillips, S. Bertrand, S. F. Berkovic, A. Malafosse, and J. Mulley. How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia. 43(Suppl 5):112–122 (2002).PubMedGoogle Scholar
  31. 31.
    N. O. Rodrigues-Pinguet, T. J. Pinguet, A. Figl, H. A. Lester, and B. N. Cohen. Mutations linked to autosomal dominant nocturnal frontal lobe epilepsy affect allosteric Ca2+ activation of the α4β2 nicotinic acetylcholine receptor. Mol Pharmacol. 68:487–501 (2005).PubMedGoogle Scholar
  32. 32.
    N. Rodrigues-Pinguet, L. Jia, M. Li, A. Figl, A. Klaassen, A. Truong, H.A. Lester, and B.N. Cohen. Five ADNFLE mutations reduce the Ca2+ dependence of the α4β2 acetylcholine response. J Physiol. 550:11–26 (2003).PubMedGoogle Scholar
  33. 33.
    A. Steppuhn, and I. T. Baldwin. Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol Lett. 10:499–511 (2007).PubMedGoogle Scholar
  34. 34.
    A. Steppuhn, K. Gase, B. Krock, R. Halitschke, and I. T. Baldwin. Nicotine’s defensive function in nature. PLoS Biol. 2:E217 (2004).PubMedGoogle Scholar
  35. 35.
    S. G. Matta, D. J. Balfour, N. L. Benowitz, R. T. Boyd, J. J. Buccafusco, A. R. Caggiula, C. R. Craig, A. C. Collins, M. I. Damaj, E. C. Donny, P. S. Gardiner, S. R. Grady, U. Heberlein, S. S. Leonard, E. D. Levin, R. J. Lukas, A. Markou, M. J. Marks, S. E. Mccallum, N. Parameswaran, K. A. Perkins, M. R. Picciotto, M. Quik, J. E. Rose, A. Rothenfluh, W. R. Schafer, I. P. Stolerman, R. F. Tyndale, J. M. Wehner, and J. M. Zirger. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl). 190:269–319 (2007).Google Scholar
  36. 36.
    L. Gyermek. New local anesthetic agents. Anesthesiology. 85:226–227 (1996).PubMedGoogle Scholar
  37. 37.
    J. C. Wathey, M. N. Nass, and H. A. Lester. Numerical reconstruction of the quantal event at nicotinic synapses. Biophys. J. 27:145–164 (1979).PubMedGoogle Scholar
  38. 38.
    T. M. Bartol, B. R. Land, E. E. Salpeter, and M. M. Salpeter. Monte-Carlo simulation of miniature end-plate current generation in the vertebrate neuromuscular junction. Biophys. J. 59:1290–1307 (1991).PubMedGoogle Scholar
  39. 39.
    A. Kuryatov, J. Luo, J. Cooper, and J. Lindstrom. Nicotine acts as a pharmacological chaperone to up-regulate human α4β2 acetylcholine receptors. Mol Pharmacol. 68:1839–1851 (2005).PubMedGoogle Scholar
  40. 40.
    C. M. Armstrong. Interaction of tetraethylamonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58:413–437 (1971).PubMedGoogle Scholar
  41. 41.
    M. Taglialatela, A. M. Vandongen, J. A. Drewe, R. H. Joho, A. M. Brown, and G. E. Kirsch. Patterns of internal and external tetraethylammonium block in four homologous K+ channels. Mol Pharmacol. 40:299–307 (1991).PubMedGoogle Scholar
  42. 42.
    G. K. Wang, C. Quan, M. Vladimirov, W. M. Mok, and J. G. Thalhammer. Quaternary ammonium derivative of lidocaine as a long-acting local anesthetic. Anesthesiology. 83:1293–1301 (1995).PubMedGoogle Scholar
  43. 43.
    T. K. Lim, B. A. Macleod, C. R. Ries, and S. K. Schwarz. The quaternary lidocaine derivative, QX-314, produces long-lasting local anesthesia in animal models in vivo. Anesthesiology. 107:305–311 (2007).PubMedGoogle Scholar
  44. 44.
    X. X. Xiu, N. Puskar, J. Shanata, H. A. Lester, and D. A. Dougherty. Nicotine binding to brain receptors requires a strong cation-π interaction Nature. (in press) (2009).Google Scholar
  45. 45.
    D. L. Beene, G. S. Brandt, W. Zhong, N. M. Zacharias, H. A. Lester, and D. A. Dougherty. Cation-π interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine. Biochemistry. 41:10262–10269 (2002).PubMedGoogle Scholar
  46. 46.
    A. L. Cashin, E. J. Petersson, H. A. Lester, and D. A. Dougherty. Using physical chemistry to differentiate nicotinic from cholinergic agonists at the nicotinic acetylcholine receptor. J Am Chem Soc. 127:350–356 (2005).PubMedGoogle Scholar
  47. 47.
    J. R. Pauly, M. J. Marks, S. F. Robinson, J. L. Van De Kamp, and A. C. Collins. Chronic nicotine and mecamylamine treatment increase brain nicotinic receptor binding without changing α4 or β2 mRNA levels. J Pharmacol Exp Ther. 278:361–369 (1996).PubMedGoogle Scholar
  48. 48.
    R. Nashmi, and H. Lester. Cell autonomy, receptor autonomy, and thermodynamics in nicotine receptor up-regulation. Biochem Pharmacol. 74:1145–1154 (2007).PubMedGoogle Scholar
  49. 49.
    A. Tapper, S. Mckinney, R. Nashmi, J. Schwarz, P. Deshpande, C. Labarca, P. Whiteaker, A. Collins, and H. Lester. Nicotine activation of α4* receptors: sufficient for reward, tolerance and sensitization. Science. 306:1029–1032 (2004).PubMedGoogle Scholar
  50. 50.
    J. Sallette, S. Pons, A. Devillers-Thiery, M. Soudant, L. Prado De Carvalho, J. P. Changeux, and P. J. Corringer. Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron. 46:595–607 (2005).PubMedGoogle Scholar
  51. 51.
    P. Tumkosit, A. Kuryatov, J. Luo, and J. Lindstrom. β3 subunits promote expression and nicotine-induced up-regulation of human nicotinic α6* nicotinic acetylcholine receptors expressed in transfected cell lines. Mol Pharmacol. 70:1358–1368 (2006).PubMedGoogle Scholar
  52. 52.
    Y. F. Vallejo, B. Buisson, D. Bertrand, and W. N. Green. Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. J Neurosci. 25:5563–5572 (2005).PubMedGoogle Scholar
  53. 53.
    J. Xu, Y. Zhu, and S. F. Heinemann. Identification of sequence motifs that target neuronal nicotinic receptors to dendrites and axons. J Neurosci. 26:9780–9793 (2006).PubMedGoogle Scholar
  54. 54.
    T. Darsow, T. K. Booker, J. C. Pina-Crespo, and S. F. Heinemann. Exocytic trafficking is required for nicotine-induced up-regulation of α4β2 nicotinic acetylcholine receptors. J Biol Chem. 280:18311–18320 (2005).PubMedGoogle Scholar
  55. 55.
    Z. Liu, A.W. Tearle, Q. Nai, and D. K. Berg. Rapid activity-driven SNARE-dependent trafficking of nicotinic receptors on somatic spines. J Neurosci. 25:1159–1168 (2005).PubMedGoogle Scholar
  56. 56.
    S. H. Keller, J. Lindstrom, M. Ellisman, and P. Taylor. Adjacent basic amino acid residues recognized by the COP I complex and ubiquitination govern endoplasmic reticulum to cell surface trafficking of the nicotinic acetylcholine receptor α-subunit. J Biol Chem. 276:18384–18391 (2001).PubMedGoogle Scholar
  57. 57.
    S. Marchand, A. Devillers-Thiery, S. Pons, J. P. Changeux, and J. Cartaud. Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci. 22:8891–8901 (2002).PubMedGoogle Scholar
  58. 58.
    J. Sallette, S. Bohler, P. Benoit, M. Soudant, S. Pons, N. Le Novere, J. P. Changeux, and P. J. Corringer. An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine. J Biol Chem. 279:18767–18775 (2004).PubMedGoogle Scholar
  59. 59.
    M. Kishi, and J. H. Steinbach. Role of the agonist binding site in up-regulation of neuronal nicotinic α4β2 receptors. Mol Pharmacol. 70:2037–2044 (2006).PubMedGoogle Scholar
  60. 60.
    H. A. Lester. The permeation pathway of neurotransmitter-gated ion channels. Ann. Rev. Biophys. Biomol. Struc. 21:267–292 (1992).Google Scholar
  61. 61.
    P. Charnet, C. Labarca, B. N. Cohen, N. Davidson, H. A. Lester, and G. Pilar. Pharmacological and kinetic properties of α4β2 neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Physiol. 450:375–394 (1992).PubMedGoogle Scholar
  62. 62.
    C. A. Briggs, E. J. Gubbins, M. J. Marks, C. B. Putman, R. Thimmapaya, M. D. Meyer, and C. S. Surowy. Untranslated region-dependent exclusive expression of high-sensitivity subforms of α4β2 and α3β2 nicotinic acetylcholine receptors. Mol Pharmacol. 70:227–240 (2006).PubMedGoogle Scholar
  63. 63.
    H. El-Bizri, and P. B. Clarke. Regulation of nicotinic receptors in rat brain following quasi-irreversible nicotinic blockade by chlorisondamine and chronic treatment with nicotine. Br J Pharmacol. 113:917–925 (1994).PubMedGoogle Scholar
  64. 64.
    A. M. Gurney, and H. P. Rang. The channel-blocking action of methonium compounds on rat submandibular ganglion cells. Br. J. Pharmacol. 82:623–642 (1984).PubMedGoogle Scholar
  65. 65.
    P. Whiteaker, C. G. Sharples, and S. Wonnacott. Agonist-induced up-regulation of α4β2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition. Mol Pharmacol. 53:950–962 (1998).PubMedGoogle Scholar
  66. 66.
    X. Peng, V. Gerzanich, R. Anand, P. J. Whiting, and J. Lindstrom. Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol. 46:523–530 (1994).PubMedGoogle Scholar
  67. 67.
    M. R. Picciotto, N. A. Addy, Y. S. Mineur, and D. H. Brunzell. It is not “either/or": Activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol. 84:329–342 (2008).PubMedGoogle Scholar
  68. 68.
    M. J. Marks, J. R. Pauly, S. D. Gross, E. S. Deneris, I. Hermans-Borgmeyer, S. F. Heinemann, and A. C. Collins. Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci. 12:2765–2784 (1992).PubMedGoogle Scholar
  69. 69.
    L. Z. Huang and U. H. Winzer-Serhan. Chronic neonatal nicotine upregulates heteromeric nicotinic acetylcholine receptor binding without change in subunit mRNA expression. Brain Res. (2006).Google Scholar
  70. 70.
    M. Gopalakrishnan, L. M. Monteggia, D. J. Anderson, E. J. Molinari, M. Piattoni-Kaplan, D. Donnelly-Roberts, S. P. Arneric, and J. P. Sullivan. Stable expression, pharmacologic properties and regulation of the human neuronal nicotinic acetylcholine α4β2 receptor. J Pharmacol Exp Ther. 276:289–297 (1996).PubMedGoogle Scholar
  71. 71.
    M. J. Marks, P. Whiteaker, J. Calcaterra, J. A. Stitzel, A. E. Bullock, S. R. Grady, M. R. Picciotto, J. P. Changeux, and A. C. Collins. Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the β2 subunit. J Pharmacol Exp Ther. 289:1090–1103 (1999).PubMedGoogle Scholar
  72. 72.
    B. Buisson, and D. Bertrand. Chronic exposure to nicotine upregulates the human α4β2 nicotinic acetylcholine receptor function. J Neurosci. 21:1819–1829 (2001).PubMedGoogle Scholar
  73. 73.
    R. Nashmi, M. E. Dickinson, S. Mckinney, M. Jareb, C. Labarca, S. E. Fraser, and H. A. Lester. Assembly of α4β2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci. 23:11554–11567 (2003).PubMedGoogle Scholar
  74. 74.
    R. Zwart, and H. P. Vijverberg. Four pharmacologically distinct subtypes of α4β2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Mol Pharmacol. 54:1124–1131 (1998).PubMedGoogle Scholar
  75. 75.
    Y. Zhou, M. E. Nelson, A. Kuryatov, C. Choi, J. Cooper, and J. Lindstrom. Human α4β2 acetylcholine receptors formed from linked subunits. J Neurosci. 23:9004–9015 (2003).PubMedGoogle Scholar
  76. 76.
    M. E. Nelson, A. Kuryatov, C. H. Choi, Y. Zhou, and J. Lindstrom. Alternate stoichiometries of α4β2 nicotinic acetylcholine receptors. Mol Pharmacol. 63:332–341 (2003).PubMedGoogle Scholar
  77. 77.
    J. W. Putney Jr., and J. F. Borzelleca. On the mechanisms of [14C]nicotine distribution in rat submaxillary gland in vitro. J Pharmacol Exp Ther. 178:180–191 (1971).PubMedGoogle Scholar
  78. 78.
    A. Roos, and W. F. Boron. Intracellular pH. Physiol. Rev. 61:296–434 (1981).PubMedGoogle Scholar
  79. 79.
    P. Paroutis, N. Touret, and S. Grinstein. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda). 19:207–215 (2004).Google Scholar
  80. 80.
    A. L. Brody, M. A. Mandelkern, E. D. London, R. E. Olmstead, J. Farahi, D. Scheibal, J. Jou, V. Allen, E. Tiongson, S. I. Chefer, A. O. Koren, and A. G. Mukhin. Cigarette smoking saturates brain α4β2 nicotinic acetylcholine receptors. Arch Gen Psychiatry. 63:907–915 (2006).PubMedGoogle Scholar
  81. 81.
    A. L. Brody, M. A. Mandelkern, M. R. Costello, A. L. Abrams, D. Scheibal, J. Farahi, E. D. London, R. E. Olmstead, J. E. Rose, and A. G. Mukhin. Brain nicotinic acetylcholine receptor occupancy: effect of smoking a denicotinized cigarette. Int J Neuropsychopharmacol. 18:1–12 (2008).Google Scholar
  82. 82.
    W. E. Balch, R. I. Morimoto, A. Dillin, and J. W. Kelly. Adapting proteostasis for disease intervention. Science. 319:916–919 (2008).PubMedGoogle Scholar
  83. 83.
  84. 84.
    R. L. Wiseman, E. T. Powers, J. N. Buxbaum, J. W. Kelly, and W. E. Balch. An adaptable standard for protein export from the endoplasmic reticulum. Cell. 131:809–821 (2007).PubMedGoogle Scholar
  85. 85.
    L. Martini, and J. L. Whistler. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol. 17:556–564 (2007).PubMedGoogle Scholar
  86. 86.
    V. V. Pollock, T. Pastoor, C. Katnik, J. Cuevas, and L. Wecker. Cyclic AMP-dependent protein kinase A and protein kinase C phosphorylate α4β2 nicotinic receptor subunits at distinct stages of receptor formation and maturation. Neuroscience. (2009) (in press).Google Scholar
  87. 87.
    F. Wang, M. E. Nelson, A. Kuryatov, F. Olale, J. Cooper, K. Keyser, and J. Lindstrom. Chronic nicotine treatment up-regulates human α3β2 but not α3β4 acetylcholine receptors stably transfected in human embryonic kidney cells. J Biol Chem. 273:28721–28732 (1998).PubMedGoogle Scholar
  88. 88.
    C. Gotti, M. Zoli, and F. Clementi. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci. 27:482–491 (2006).PubMedGoogle Scholar
  89. 89.
    C. Fonck, R. Nashmi, R. Salas, C. Zhou, Q. Huang, M. De Biasi, R. A. Lester, and H. A. Lester. Demonstration of functional α4-containing nicotinic receptors in the medial habenula. Neuropharmacology. 56(1):247–253 (2009).Google Scholar
  90. 90.
    L. J. Bierut, P. A. Madden, N. Breslau, E. O. Johnson, D. Hatsukami, O. F. Pomerleau, G. E. Swan, J. Rutter, S. Bertelsen, L. Fox, D. Fugman, A. M. Goate, A. L. Hinrichs, K. Konvicka, N. G. Martin, G. W. Montgomery, N. L. Saccone, S. F. Saccone, J. C. Wang, G. A. Chase, J. P. Rice, and D. G. Ballinger. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet. 16:24–35 (2007).PubMedGoogle Scholar
  91. 91.
    S. F. Saccone, A. L. Hinrichs, N. L. Saccone, G. A. Chase, K. Konvicka, P. A. Madden, N. Breslau, E. O. Johnson, D. Hatsukami, O. Pomerleau, G. E. Swan, A. M. Goate, J. Rutter, S. Bertelsen, L. Fox, D. Fugman, N. G. Martin, G. W. Montgomery, J. C. Wang, D. G. Ballinger, J. P. Rice, and L. J. Bierut. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Human Molecular Genetics. 16:36–49 (2007).PubMedGoogle Scholar
  92. 92.
    W. Berrettini, X. Yuan, F. Tozzi, K. Song, C. Francks, H. Chilcoat, D. Waterworth, P. Muglia, and V. Mooser. α5/α3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry. 13:368–373 (2008).PubMedGoogle Scholar
  93. 93.
    L. J. Bierut, J. A. Stitzel, J. C. Wang, A. L. Hinrichs, R. A. Grucza, X. Xuei, N. L. Saccone, S. F. Saccone, S. Bertelsen, L. Fox, W. J. Horton, N. Breslau, J. Budde, C. R. Cloninger, D. M. Dick, T. Foroud, D. Hatsukami, V. Hesselbrock, E. O. Johnson, J. Kramer, S. Kuperman, P. A. Madden, K. Mayo, J. Nurnberger Jr., O. Pomerleau, B. Porjesz, O. Reyes, M. Schuckit, G. Swan, J. A. Tischfield, H. J. Edenberg, J. P. Rice, and A. M. Goate. Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry. 165:1163–1171 (2008).PubMedGoogle Scholar
  94. 94.
    R. Sherva, K. Wilhelmsen, C. S. Pomerleau, S. A. Chasse, J. P. Rice, S. M. Snedecor, L. J. Bierut, R. J. Neuman, and O. F. Pomerleau. Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit α5 (CHRNA5) with smoking status and with ‘pleasurable buzz’ during early experimentation with smoking. Addiction. 103:1544–1552 (2008).PubMedGoogle Scholar
  95. 95.
    V. Stevens, L. Bierut, J. Talbot, W. Jc, J. Sun, A. Hinrichs, M. Thun, A. Goate, and E. Calle. Nicotinic Receptor Gene Variants Influence Susceptibility to Heavy Smoking. Cancer Epidemiol Biomarkers Prev. 17(12):3517–3525 (2008).Google Scholar
  96. 96.
    T. E. Thorgeirsson, F. Geller, P. Sulem, T. Rafnar, A. Wiste, K. P. Magnusson, A. Manolescu, G. Thorleifsson, H. Stefansson, A. Ingason, S. N. Stacey, J. T. Bergthorsson, S. Thorlacius, J. Gudmundsson, T. Jonsson, M. Jakobsdottir, J. Saemundsdottir, O. Olafsdottir, L. J. Gudmundsson, G. Bjornsdottir, K. Kristjansson, H. Skuladottir, H. J. Isaksson, T. Gudbjartsson, G. T. Jones, T. Mueller, A. Gottsater, A. Flex, K. K. Aben, F. De Vegt, P. F. Mulders, D. Isla, M. J. Vidal, L. Asin, B. Saez, L. Murillo, T. Blondal, H. Kolbeinsson, J. G. Stefansson, I. Hansdottir, V. Runarsdottir, R. Pola, B. Lindblad, A. M. Van Rij, B. Dieplinger, M. Haltmayer, J. I. Mayordomo, L. A. Kiemeney, S. E. Matthiasson, H. Oskarsson, T. Tyrfingsson, D. F. Gudbjartsson, J. R. Gulcher, S. Jonsson, U. Thorsteinsdottir, A. Kong, and K. Stefansson. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 452:638–642 (2008).PubMedGoogle Scholar
  97. 97.
    R.A. Grucza, J. C. Wang, J. A. Stitzel, A. L. Hinrichs, S. F. Saccone, N. L. Saccone, K. K. Bucholz, C. R. Cloninger, R. J. Neuman, J. P. Budde, L. Fox, S. Bertelsen, J. Kramer, V. Hesselbrock, J. Tischfield, J. I. Nurnberger Jr., L. Almasy, B. Porjesz, S. Kuperman, M. A. Schuckit, H. J. Edenberg, J. P. Rice, A. M. Goate, and L. J. Bierut. A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence. Biol Psychiatry. 64:922–929 (2008).PubMedGoogle Scholar
  98. 98.
    R. B. Weiss, T. B. Baker, D. S. Cannon, A. Von Niederhausern, D. M. Dunn, N. Matsunami, N. A. Singh, L. Baird, H. Coon, W. M. Mcmahon, M. E. Piper, M. C. Fiore, M. B. Scholand, J. E. Connett, R. E. Kanner, L. C. Gahring, S. W. Rogers, J. R. Hoidal, and M. F. Leppert. A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction. PLoS Genet. 4:e1000125 (2008).PubMedGoogle Scholar
  99. 99.
    J. Wang, R. Grucza, C. Cruchaga, A. Hinrichs, S. Bertelsen, J. Budde, L. Fox, E. Goldstein, O. Reyes, N. Saccone, S. Saccone, X. Xuei, K. Bucholz, S. Kuperman, J. Nurnberger Jr, J. Rice, M. Schuckit, J. Tischfield, V. Hesselbrock, B. Porjesz, H. Edenberg, L. Bierut, and A. Goate. Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence. Mol Psychiatry. 18414406:(2008).Google Scholar
  100. 100.
    C. I. Amos, X. Wu, P. Broderick, I. P. Gorlov, J. Gu, T. Eisen, Q. Dong, Q. Zhang, X. Gu, J. Vijayakrishnan, K. Sullivan, A. Matakidou, Y. Wang, G. Mills, K. Doheny, Y. Y. Tsai, W. V. Chen, S. Shete, M. R. Spitz, and R. S. Houlston. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. (2008).Google Scholar
  101. 101.
    R. J. Hung, J. D. Mckay, V. Gaborieau, P. Boffetta, M. Hashibe, D. Zaridze, A. Mukeria, N. Szeszenia-Dabrowska, J. Lissowska, P. Rudnai, E. Fabianova, D. Mates, V. Bencko, L. Foretova, V. Janout, C. Chen, G. Goodman, J. K. Field, T. Liloglou, G. Xinarianos, A. Cassidy, J. Mclaughlin, G. Liu, S. Narod, H. E. Krokan, F. Skorpen, M. B. Elvestad, K. Hveem, L. Vatten, J. Linseisen, F. Clavel-Chapelon, P. Vineis, H. B. Bueno-De-Mesquita, E. Lund, C. Martinez, S. Bingham, T. Rasmuson, P. Hainaut, E. Riboli, W. Ahrens, S. Benhamou, P. Lagiou, D. Trichopoulos, I. Holcatova, F. Merletti, K. Kjaerheim, A. Agudo, G. Macfarlane, R. Talamini, L. Simonato, R. Lowry, D.I. Conway, A. Znaor, C. Healy, D. Zelenika, A. Boland, M. Delepine, M. Foglio, D. Lechner, F. Matsuda, H. Blanche, I. Gut, S. Heath, M. Lathrop, and P. Brennan. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 452:633–637 (2008).PubMedGoogle Scholar
  102. 102.
    P. Liu, H. G. Vikis, D. Wang, Y. Lu, Y. Wang, A. G. Schwartz, S. M. Pinney, P. Yang, M. De Andrade, G. M. Petersen, J. S. Wiest, P. R. Fain, A. Gazdar, C. Gaba, H. Rothschild, D. Mandal, T. Coons, J. Lee, E. Kupert, D. Seminara, J. Minna, J. E. Bailey-Wilson, X. Wu, M. R. Spitz, T. Eisen, R. S. Houlston, C. I. Amos, M. W. Anderson, and M. You. Familial aggregation of common sequence variants on 15q24–25.1 in lung cancer. J Natl Cancer Inst. 100(18):1326–1330 (2008).Google Scholar
  103. 103.
    P. Liu, H. G. Vikis, D. Wang, Y. Lu, Y. Wang, A. G. Schwartz, S. M. Pinney, P. Yang, M. De Andrade, G. M. Petersen, J. S. Wiest, P. R. Fain, A. Gazdar, C. Gaba, H. Rothschild, D. Mandal, T. Coons, J. Lee, E. Kupert, D. Seminara, J. Minna, J. E. Bailey-Wilson, X. Wu, M. R. Spitz, T. Eisen, R. S. Houlston, C. I. Amos, M. W. Anderson, and M. You. Familial aggregation of common sequence variants on 15q24–25.1 in lung cancer. J Natl Cancer Inst. 100:1326–1330 (2008).PubMedGoogle Scholar
  104. 104.
    C. I. Amos, X. Wu, P. Broderick, I. P. Gorlov, J. Gu, T. Eisen, Q. Dong, Q. Zhang, X. Gu, J. Vijayakrishnan, K. Sullivan, A. Matakidou, Y. Wang, G. Mills, K. Doheny, Y. Y. Tsai, W. V. Chen, S. Shete, M. R. Spitz, and R. S. Houlston. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 40:616–622 (2008).PubMedGoogle Scholar
  105. 105.
    R. W. Brown, A. C. Collins, J. M. Lindstrom, and P. Whiteaker. Nicotinic α5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers. J Neurochem. 103:204–215 (2007).PubMedGoogle Scholar
  106. 106.
    L. Azam, Y. Chen, and F. M. Leslie. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons. Neuroscience. 144:1347–1360 (2007).PubMedGoogle Scholar
  107. 107.
    D. Mao, R. P. Yasuda, H. Fan, B. B. Wolfe, and K. J. Kellar. Heterogeneity of nicotinic cholinergic receptors in rat superior cervical and nodose Ganglia. Mol Pharmacol. 70:1693–1699 (2006).PubMedGoogle Scholar
  108. 108.
    A. D. Maus, E. F. Pereira, P. I. Karachunski, R. M. Horton, D. Navaneetham, K. Macklin, W. S. Cortes, E. X. Albuquerque, and B. M. Conti-Fine. Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol. 54:779–788 (1998).PubMedGoogle Scholar
  109. 109.
    J. Arredondo, A. I. Chernyavsky, and S. A. Grando. The nicotinic receptor antagonists abolish pathobiologic effects of tobacco-derived nitrosamines on BEP2D cells. J Cancer Res Clin Oncol. 132:653–663 (2006).PubMedGoogle Scholar
  110. 110.
    P. Song, H. S. Sekhon, X. W. Fu, M. Maier, Y. Jia, J. Duan, B. J. Proskosil, C. Gravett, J. Lindstrom, G. P. Mark, S. Saha, and E. R. Spindel. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res. 68:4693–4700 (2008).PubMedGoogle Scholar
  111. 111.
    H. Fischer, A. Orr-Urtreger, L. W. Role, and S. Huck. Selective deletion of the α5 subunit differentially affects somatic-dendritic versus axonally targeted nicotinic ACh receptors in mouse. J Physiol. 563:119–137 (2005).PubMedGoogle Scholar
  112. 112.
    D. Mao, D. C. Perry, R. P. Yasuda, B. B. Wolfe, and K. J. Kellar. The α4β2α5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. J Neurochem. 104:446–456 (2007).PubMedGoogle Scholar
  113. 113.
    A. Kuryatov, J. Onksen, and J. Lindstrom. Roles of accessory subunits in α4β2α5 nicotinic receptors. Mol Pharmacol. 74:132–143 (2008).PubMedGoogle Scholar
  114. 114.
    I. Ibanez-Tallon, J. M. Miwa, H. L. Wang, N. C. Adams, G. W. Crabtree, S. M. Sine, and N. Heintz. Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron. 33:893–903 (2002).PubMedGoogle Scholar
  115. 115.
    M. W. Quick, and R. A. Lester. Desensitization of neuronal nicotinic receptors. J Neurobiol. 53:457–478 (2002).PubMedGoogle Scholar
  116. 116.
    J. M. Miwa, T. R. Stevens, S. L. King, B. J. Caldarone, I. Ibanez-Tallon, C. Xiao, R. M. Fitzsimonds, C. Pavlides, H. A. Lester, M. R. Picciotto, and N. Heintz. The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron. 51:587–600 (2006).PubMedGoogle Scholar
  117. 117.
    E. D. Levin. Nicotinic receptor subtypes and cognitive function. J Neurobiol. 53:633–640 (2002).PubMedGoogle Scholar
  118. 118.
    A. Orr-Urtreger, R. S. Broide, M. R. Kasten, H. Dang, J. A. Dani, A. L. Beaudet, and J. W. Patrick. Mice homozygous for the L250T mutation in the α7 nicotinic acetylcholine receptor show increased neuronal apoptosis and die within 1 day of birth. J Neurochem. 74:2154–2166 (2000).PubMedGoogle Scholar
  119. 119.
    C. Labarca, J. Schwarz, P. Deshpande, S. Schwarz, M. W. Nowak, C. Fonck, R. Nashmi, P. Kofuji, H. Dang, W. Shi, M. Fidan, B. S. Khakh, Z. Chen, B. J. Bowers, J. Boulter, J. M. Wehner, and H. A. Lester. Point mutant mice with hypersensitive α4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci U S A. 98:2786–2791 (2001).PubMedGoogle Scholar
  120. 120.
    F. Chimienti, R. C. Hogg, L. Plantard, C. Lehmann, N. Brakch, J. Fischer, M. Huber, D. Bertrand, and D. Hohl. Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. Hum Mol Genet. 12:3017–3024 (2003).PubMedGoogle Scholar
  121. 121.
    M. Skok, R. Grailhe, and J. P. Changeux. Nicotinic receptors regulate B lymphocyte activation and immune response. Eur J Pharmacol. 517:246–251 (2005).PubMedGoogle Scholar
  122. 122.
    M. V. Skok, R. Grailhe, F. Agenes, and J. P. Changeux. The role of nicotinic receptors in B-lymphocyte development and activation. Life Sci. 80:2334–2336 (2007).PubMedGoogle Scholar
  123. 123.
    J. Arredondo, A. I. Chernyavsky, R. J. Webber, and S. A. Grando. Biological effects of SLURP-1 on human keratinocytes. J Invest Dermatol. 125:1236–1241 (2005).PubMedGoogle Scholar
  124. 124.
    J. Arredondo, A. I. Chernyavsky, and S. A. Grando. SLURP-1 and -2 in normal, immortalized and malignant oral keratinocytes. Life Sci. 80:2243–2247 (2007).PubMedGoogle Scholar
  125. 125.
    H. S. Sekhon, P. Song, Y. Jia, J. Lindstrom, and E. R. Spindel. Expression of lynx1 in developing lung and its modulation by prenatal nicotine exposure. Cell Tissue Res. 320:287–297 (2005).PubMedGoogle Scholar
  126. 126.
    S. M. Kassam, P. M. Herman, N. M. Goodfellow, N. C. Alves, and E. K. Lambe. Developmental excitation of corticothalamic neurons by nicotinic acetylcholine receptors. J Neurosci. 28:8756–8764 (2008).PubMedGoogle Scholar
  127. 127.
    B. S. Khakh, J. A. Fisher, R. Nashmi, D. N. Bowser, and H. A. Lester. An angstrom scale interaction between plasma membrane ATP-gated P2X2 and α4β2 nicotinic channels measured with FRET and TIRF microscopy. J Neurosci. 25:6911–6920 (2005).PubMedGoogle Scholar
  128. 128.
    R. M. Drenan, R. Nashmi, P. I. Imoukhuede, H. Just, S. Mckinney, and H. A. Lester. Subcellular trafficking, pentameric assembly and subunit stoichiometry of neuronal nicotinic ACh receptors containing fluorescently-labeled α6 and β3 subunits. Mol Pharmacol. 73:27–41 (2008).PubMedGoogle Scholar
  129. 129.
    R. Pantoja, E. Rodriguez, M. Dibas, D. Dougherty, and H. Lester. Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors. Biophys J. 96(1):226–237 (2009).Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  • Henry A. Lester
    • 1
  • Cheng Xiao
    • 1
  • Rahul Srinivasan
    • 1
  • Cagdas D. Son
    • 1
  • Julie Miwa
    • 1
  • Rigo Pantoja
    • 1
  • Matthew R. Banghart
    • 2
  • Dennis A. Dougherty
    • 3
  • Alison M. Goate
    • 4
  • Jen C. Wang
    • 4
  1. 1.Division of Biology 156-29California Institute of TechnologyPasadenaUSA
  2. 2.Department of NeurobiologyHarvard Medical SchoolBostonUSA
  3. 3.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Washington University School of MedicineSt. LouisUSA

Personalised recommendations