The AAPS Journal

, 11:65 | Cite as

Learning from the Viral Journey: How to Enter Cells and How to Overcome Intracellular Barriers to Reach the Nucleus

Emerging Drug Delivery Technologies


Viruses deliver their genome into host cells where they subsequently replicate and multiply. A variety of relevant strategies have evolved by which viruses gain intracellular access and utilize cellular machinery for the synthesis of their genome. Therefore, the viral journey provides insight into the cell’s trafficking machinery and how it can be best exploited to improve nonviral gene delivery systems. This review summarizes viral internalization pathways and intracellular trafficking of viruses, with an emphasis on the endosomal escape processes of nonenveloped viruses. Intracellular events from viral entry through nuclear delivery of the viral complementary DNA are also discussed.

Key words

escape process nuclear delivery uptake mechanism virus 



This work was supported by the Core Research for Evolution of Science and Technology (CREST), Japan Science and Technology Corporation (JST). We also thank Dr. James L. McDonald for the helpful advice in writing the English manuscript.


  1. 1.
    A. E. Smith, and A. Helenius. How viruses enter animal cells. Science 304:237–242 (2004).PubMedGoogle Scholar
  2. 2.
    J. L. Anderson, and T. J. Hope. Intracellular trafficking of retroviral vectors: obstacles and advances. Gene Ther. 12:1667–1678 (2005).PubMedGoogle Scholar
  3. 3.
    D. S. Dimitrov. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2:109–122 (2004).PubMedGoogle Scholar
  4. 4.
    L. Pelkmans, J. Kartenbeck, and A. Helenius. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3:473–483 (2001).PubMedGoogle Scholar
  5. 5.
    M. Marsh, and A. Helenius. Virus entry: open sesame. Cell 124:729–740 (2006).PubMedGoogle Scholar
  6. 6.
    L. K. Medina-Kauwe. Endocytosis of adenovirus and adenovirus capsid proteins. Adv. Drug Deliv. Rev. 55:1485–1496 (2003).PubMedGoogle Scholar
  7. 7.
    T. J. Wickham, P. Mathias, D. A. Cheresh, and G. R. Nemerow. Integrin alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell. 73:309–319 (1993).PubMedGoogle Scholar
  8. 8.
    N. Arnberg, A. H. Kidd, K. Edlund, and G. Wadell. Adenovirus type 37 uses sialic acid as cellular receptor. J. Virol. 74:42–48 (2000).PubMedGoogle Scholar
  9. 9.
    C. Bernardes, A. Antonio, M. C. Pedroso de Lima, and M. L. Valdeira. Cholesterol affects African swine fever virus infection. Biochim. Biophys. Acta. 1393:19–25 (1998).PubMedGoogle Scholar
  10. 10.
    G. Simmons, J. D. Reeves, C. C. Grogan, L. H. Vandenberghe, F. Baribaud, J. C. Whitbeck, E. Burke, M. J. Buchmeier, E. J. Soilleux, J. L. Riley, R. W. Doms, P. Bates, and S. Pohlmann. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virol 305:115–123 (2003).Google Scholar
  11. 11.
    S. Chan, C. Empig, F. Welte, R. Speck, A. Schmaljohn, J. Kreisberg, and M. Goldsmith. Folate receptor alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 106:117–126 (2001).PubMedGoogle Scholar
  12. 12.
    B. Bartosch, and F. L. Cosset. Cell entry of hepatitis C virus. Virol 348:1–12 (2006).Google Scholar
  13. 13.
    H. Kroschewski, S. L. Allison, F. X. Heinz, and C. W. Mandl. Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virol 308:92–100 (2003).Google Scholar
  14. 14.
    Y. Chen, T. Maquire, R. E. Hileman, J. R. Fromm, J. D. Esko, R. J. Linhardt, and R. M. Marks. Dengue virus infectivity depends on envelope protein binding to target cell heparin sulfate. Nat. Med. 3:866–871 (1997).PubMedGoogle Scholar
  15. 15.
    B. Tassaneetrithep, T. H. Burgess, A. Granelli-Piperno, C. Trumpfheller, J. Finke, W. Sun, M. A. Eller, K. Pattanapanyasat, S. Sarasombath, D. L. Birx, R. M. Steinman, S. Schlesinger, and M. A. Marovich. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197:823–829 (2003).PubMedGoogle Scholar
  16. 16.
    A. Cooper, and Y. Shaul. Clathrin-mediated endocytosis and lysosomal cleavage of hepatitis B virus capsid-like core particles. J. Biol. Chem. 281:16563–16569 (2006).PubMedGoogle Scholar
  17. 17.
    T. Compton, D. M. Nowlin, and N. R. Cooper. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparin sulfate. Virol. 193:834–841 (1993).Google Scholar
  18. 18.
    F. Halary, A. Amara, H. Lortat-Jacob, M. Messerle, T. Delaunay, C. Houles, F. Fieschi, F. Arenzana-Seisdedos, J. F. Moreau, and J. Dechanet-Merville. Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17:653–664 (2002).PubMedGoogle Scholar
  19. 19.
    T. Suzuki, T. Takahashi, C. T. Guo, K. I. Hidari, D. Miyamoto, H. Goto, Y. Kawaoka, and Y. Suzuki. Sialidase activity of influenza A virus in an endocytic pathway enhances viral replication. J. Virol. 79:11705–11715 (2005).PubMedGoogle Scholar
  20. 20.
    P. Drobni, N. Mistry, N. McMillan, and M. Evander. Carboxy-fluorescein diacetate, succinimidyl ester labeled papillomavirus virus-like particles fluoresce after internalization and interact with heparan sulfate for binding and entry. Virol 310:163–172 (2003).Google Scholar
  21. 21.
    M. Evander, I. H. Frazer, E. Payne, Y. M. Qi, K. Hengst, and N. A. McMillan. Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J. Virol. 71:2449–24456 (1997).PubMedGoogle Scholar
  22. 22.
    A. S. Dugan, S. Eash, and W. J. Atwood. Update on BK virus entry and intracellular trafficking. Transpl. Infect. Dis. 8:62–67 (2006).PubMedGoogle Scholar
  23. 23.
    C. Summerford, and R. Samulski. Membrane-associated heparin sulfate proteoglycan is a receptor for adeno-associated virus type 2. J. Virol. 72:1438–1445 (1998).PubMedGoogle Scholar
  24. 24.
    K. Qing, C. Mah, J. Hansen, S. Z. Zhou, V. Dwarki, and A. Srivastava. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. 5:71–77 (1999).PubMedGoogle Scholar
  25. 25.
    C. Summerford, J. S. Bartlett, and R. J. Samulski. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat. Med. 5:78–82 (1999).PubMedGoogle Scholar
  26. 26.
    R. W. Walters, S. M. Yi, S. Keshavjee, K. E. Brown, M. J. Welsh, J. A. Chiorini, and J. Zabner. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J. Biol. Chem. 276:20610–20616 (2001).PubMedGoogle Scholar
  27. 27.
    C. Ros, C. J. Burckhardt, and C. Kempf. Cytoplasmic trafficking of minute virus of mice: low-pH requirement, routing to late endosomes, and proteasome interaction. J. Virol. 76:12634–12645 (2002).PubMedGoogle Scholar
  28. 28.
    J. S. Parker, and C. R. Parrish. Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J. Virol. 74:1919–1930 (2000).PubMedGoogle Scholar
  29. 29.
    P. Joki-Korpela, V. Marjomaki, C. Krogerus, J. Heino, and T. Hyypia. Entry of human parechovirus 1. J. Virol. 75:1958–1967 (2001).PubMedGoogle Scholar
  30. 30.
    P. Joki-Korpela, and T. Hyypia. Parechoviruses, a novel group of human picornaviruses. Ann. Med. 33:466–471 (2001).PubMedGoogle Scholar
  31. 31.
    F. Hofer, M. Gruenberger, H. Kowalski, H. Machat, M. Huettinger, and E. Kuechler. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl. Acad. Sci. U.S.A. 91:1839–1842 (1994).PubMedGoogle Scholar
  32. 32.
    T. Chou. Stochastic entry of enveloped viruses: fusion versus endocytosis. Biophys. J. 93:1116–1123 (2007).PubMedGoogle Scholar
  33. 33.
    M. Husain, and B. Moss. Role of receptor-mediated endocytosis in the formation of vaccinia virus extracellular enveloped particles. J. Virol. 79:4080–4089 (2005).PubMedGoogle Scholar
  34. 34.
    E. S. Barton, J. C. Forrest, J. L. Connolly, J. D. Chappell, Y. Liu, and F. J. Schnell. Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451 (2001).PubMedGoogle Scholar
  35. 35.
    J. Brojatsch, J. Naughton, M. M. Rolls, K. Zingler, and J. A. Young. CAR1, a TNF-related protein, is a cellular receptor for cytophatic avian leukosis–sarcoma viruses and mediates apoptosis. Cell 87:845–855 (1996).PubMedGoogle Scholar
  36. 36.
    F. D. Griffero, S. A. Hoschander, and J. Brojatsch. Endocytosis is a critical step in entry of subgroup B avian leukosis viruses. J. Virol. 76:12866–12876 (2002).Google Scholar
  37. 37.
    P. Lewis, Y. Fu, and T. L. Lentz. Rabies virus entry into endosomes in IMR-32 human neuroblastoma cells. Exp. Neurol. 153:65–73 (1998).PubMedGoogle Scholar
  38. 38.
    X. Sun, V. K. Yau, B. J. Briggs, and G. R. Whittaker. Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virol 338:53–60 (2005).Google Scholar
  39. 39.
    A. P. Byrnes, and D. E. Griffin. Binding of sindbis virus to cell surface heparan sulfate. J. Virol. 72:7349–7356 (1998).PubMedGoogle Scholar
  40. 40.
    L. DeTulleo, and T. Kirchhausen. The clathrin endocytic pathway in viral infection. EMBO J. 17:4585–4593 (1998).PubMedGoogle Scholar
  41. 41.
    A. Helenius, B. Morein, E. Fries, K. Simons, P. Robinson, V. Schirrmacher, C. Terhorst, and J. L. Strominger. Human (HLA-A and HLA-B) and Murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for semliki forest virus. Proc. Natl. Acad. Sci. U.S.A. 75:3846–3450 (1978).PubMedGoogle Scholar
  42. 42.
    S. H. Kee, E. J. Cho, J. W. Song, K. S. Park, L. J. Baek, and K. J. Song. Effects of endocytosis inhibitory drugs on rubella virus entry into VeroE6 cells. Microbiol. Immunol. 48:823–829 (2004).PubMedGoogle Scholar
  43. 43.
    P. Mastromarino, L. Cioe, S. Rieti, and N. Orsi. Role of membrane phospholipids and glycolipids in the Vero cell surface receptor for rubella virus. Med. Microbiol. Immunol. 179:105–114 (1990).PubMedGoogle Scholar
  44. 44.
    L. Bousarghin, A. Touze, P. Y. Sizaret, and P. Coursaget. Human papillomavirus type 16, 31 and 58 use different endocytosis pathways to enter cells. J. Virol. 77:3846–3850 (2003).PubMedGoogle Scholar
  45. 45.
    H. Connaris, T. Takimoto, R. Russell, S. Crennell, I. Moustafa, A. Portner, and G. Taylor. Probing the sialic acid binding site of the hemagglutinin-neuraminidase of Newcastle disease virus: identification of key amino acids involved in cell binding, catalysis, and fusion. J. Virol. 76:1068–1074 (2000).Google Scholar
  46. 46.
    C. Cantin, J. Holguera, L. Ferreira, E. Villar, and I. Munoz-Barroso. Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J. Gen. Virol. 88:559–569 (2007).PubMedGoogle Scholar
  47. 47.
    D. Werling, J. C. Hope, P. Chaplin, R. A. Collins, G. Taylor, and C. J. Howard. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J. Leukoc. Biol. 66:50–58 (1999).PubMedGoogle Scholar
  48. 48.
    Y. Zhang, and J. M. Bergelson. Adenovirus receptors. J. Virol. 79:12125–12131 (2005).PubMedGoogle Scholar
  49. 49.
    J. T. Shieh, and J. M. Bergelson. Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J. Virol. 76:9474–9480 (2002).PubMedGoogle Scholar
  50. 50.
    V. Marjomaki, V. Pietiainen, H. Matilainen, P. Upla, J. Ivaska, L. Nissinen, H. Reunanen, P. Huttunen, T. Hyypia, and J. Heino. Internalization of echovirus 1 in caveolae. J. Virol. 76:1856–1865 (2002).PubMedGoogle Scholar
  51. 51.
    Z. Richterova, D. Liebl, M. Horak, Z. Palkova, J. Stokrova, P. Hozak, J. Korb, and J. Forstova. Caveolae are involved in the trafficking of mouse polyoma virus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol. 75:10880–10891 (2001).PubMedGoogle Scholar
  52. 52.
    P. G. Spear, R. J. Eisenberg, and G. H. Cohen. Three classes of cell surface receptors for alphaherpes virus entry. Virol. 275:1–8 (2000).Google Scholar
  53. 53.
    J. D. Fingeroth, J. J. Weiss, T. F. Tedder, J. L. Strominger, P. A. Biro, and D. T. Fearon. Epstein–Barr virus receptor on human B lymphocytes is the complement receptor. Proc. Natl. Acad. Sci. U.S.A. 81:4510–4514 (1984).PubMedGoogle Scholar
  54. 54.
    G. R. Nemerow, R. Wolfert, M. McNaughton, and N. R. Cooper. Identification and characterization of the Epstein–Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J. Virol. 55:347–351 (1985).PubMedGoogle Scholar
  55. 55.
    E. Bose, and A. K. Banerjee. Role of heparan sulfate in human parainfluenza virus type 3 infection. Virol. 298:73–83 (2002).Google Scholar
  56. 56.
    R. A. Lamb. Paramyxovirus fusion: a hypothesis for changes. Virol. 197:1–11 (1993).Google Scholar
  57. 57.
    M. Tahara, M. Takeda, and Y. Yanagi. Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell–cell fusion. J. Virol. 81:6827–6836 (2007).PubMedGoogle Scholar
  58. 58.
    J. K. Ghosh, S. G. Peisajovich, M. Ovadia, and Y. Shai. Structure-function study of a heptad repeat positioned near the transmembrane domain of Sendai virus fusion protein which blocks virus-cell fusion. J. Biol. Chem. 273:27182–27190 (1998).PubMedGoogle Scholar
  59. 59.
    G. Ren, Z. Wang, and X. Hu. Effects of ectodomain sequences between HR1 and HR2 of F1 protein on the specific membrane fusion in paramyxoviruses. Intervirol. 50:115–122 (2007).Google Scholar
  60. 60.
    P. Li, H. W. McL Rixon, G. Brown, and R. J. Sugrue. Functional analysis of the N-linked glycans within the fusion protein of respiratory syncytial virus. Methods Mol. Biol. 379:69–83 (2007).PubMedGoogle Scholar
  61. 61.
    E. A. Berger, P. M. Murphy, and J. M. Farber. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism and disease. Annu. Rev. Immunol. 17:657–700 (1999).PubMedGoogle Scholar
  62. 62.
    E. H. Bae, S. H. Park, and Y. T. Jung. Role of a third extracellular domain of an ecotropic receptor in moloney murine leukemia virus infection. J. Microbiol. 44:447–452 (2006).PubMedGoogle Scholar
  63. 63.
    W. Cao, M. D. Henry, P. Borrow, H. Yamada, J. H. Eldor, E. V. Ravkov, S. T. Nichol, R. W. Compans, K. P. Campbell, and M. B. Oldstone. Identification of alfa-dystroglycan as a receptor for lymphocytic choriomeningitis virus and lassa fever virus. Science 282:2079–2081 (1998).PubMedGoogle Scholar
  64. 64.
    P. Borrow, and M. B. Oldstone. Mechanism of lyphocytic choriomeningitis virus entry into cells. Virology 198:1–9 (1994).PubMedGoogle Scholar
  65. 65.
    O. Meier, K. Boucke, S. V. Hammer, S. Keller, R. P. Stidwill, S. Hemmi, and U. F. Greber. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158:1119–1131 (2002).PubMedGoogle Scholar
  66. 66.
    S. B. Sieczkarski, and G. R. Whittaker. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J. Virol. 76:10455–64 (2002).PubMedGoogle Scholar
  67. 67.
    J. M. Hogle. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56:677–702 (2002).PubMedGoogle Scholar
  68. 68.
    J. M. Greve, G. Davis, A. M. Meyer, C. P. Forte, S. C. Yost, and C. W. Marlor. The major human rhinovirus receptor is ICAM-1. Cell 56:834–849 (1989).Google Scholar
  69. 69.
    E. Prechla, C. Plank, E. Wagner, D. Blaas, and R. Fuchs. Virus-mediated release of endosomal content in vitro: different behaviour of adenovirus and rhinovirus serotype 2. J. Cell Biol. 131:111–123 (1995).Google Scholar
  70. 70.
    A. D. Stuart, H. E. Eustace, T. A. McKee, and T. D. Brown. A novel cell entry pathway for a DAF-using human enterovirus is dependent on lipid rafts. J. Virol. 76:9307–9322 (2002).PubMedGoogle Scholar
  71. 71.
    C. A. Guerrero, S. Zarate, G. Corkidi, S. Lopez, and C. F. Arias. Biochemical characterization of rotavirus receptors in MA104 cells. J. Virol. 74:9362–9371 (2000).PubMedGoogle Scholar
  72. 72.
    M. E. Chemello, O. C. Aristimuno, F. Michelangeli, and M. C. Ruiz. Requirement for vacuolar H+-ATPase activity and Ca2+ gradient during entry of rotavirus into MA104 cells. J. Virol. 76:13083–13087 (2002).PubMedGoogle Scholar
  73. 73.
    C. Sanchez-San Martin, T. Lopez, C. F. Arias, and S. Lopez. Characterization of rotavirus cell entry. J. Virol. 78:2310–2318 (2004).PubMedGoogle Scholar
  74. 74.
    U. F. Greber. Signalling in viral entry. Cell Mol. Life Sci. 59:608–626 (2002).PubMedGoogle Scholar
  75. 75.
    L. Pelkmans, E. Fava, H. Grabner, M. Hannus, B. Habermann, E. Krauz, and M. Zerial. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86 (2005).PubMedGoogle Scholar
  76. 76.
    F. R. Maxfield, and T. E. McGraw. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5:121–132 (2004).PubMedGoogle Scholar
  77. 77.
    J. E. Schnitzer. Caveolae: from basic trafficking mechanism to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv. Drug Deliv. Rev. 49:265–280 (2001).PubMedGoogle Scholar
  78. 78.
    J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra. Size-dependent internalization of particles via pathways of clathrin- and caveolae-mediated endocytosis. Biochem 377:159–169 (2004).Google Scholar
  79. 79.
    L. Pelkmans, and A. Helenius. Endocytosis via caveolae. Traffic 3:311–320 (2002).PubMedGoogle Scholar
  80. 80.
    P. W. Shaul, and R. G. W. Anderson. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. 275:L843–L851 (1998).PubMedGoogle Scholar
  81. 81.
    P. L. Tuma, and A. L. Hubbard. Transcytosis: crossing cellular barriers. Physiol. Rev. 83:871–932 (2003).PubMedGoogle Scholar
  82. 82.
    M. Bomsel, and A. Alfsen. Entry of viruses through the epithelial barrier: pathogenic trickery. Mol. Cell Biol. 4:57–68 (2003).Google Scholar
  83. 83.
    L. Ouzilou, E. Caliot, I. Pelletier, M.-C. Prevost, E. Pringault, and F. Colbere-Garapin. Poliovirus transcytosis through M-like cells. J. General Virol. 83:2177–2182 (2002).Google Scholar
  84. 84.
    M. Bomsel. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat. Med. 3:42–47 (1997).PubMedGoogle Scholar
  85. 85.
    M. Pesonen, W. Ansorge, and K. Simons. Transcytosis of the G protein of vesicular stomatitis virus after implantation into the apical plasma membrane of Madin–Darby canine kidney cells I. Involvement of endosomes and lysosomes. J. Cell Biol. 99:796–802 (1984).PubMedGoogle Scholar
  86. 86.
    M. Pesonen, R. Bravo, and K. Simons. Transcytosis of the G protein of vesicular stomatitis virus after implantation into the apical membrane of Madin–Darby canine kidney cells II. Involvement of the Golgi complex. J. Cell Biol. 99:803–809 (1984).PubMedGoogle Scholar
  87. 87.
    J. E. Schnitzer, and P. Oh. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins.. J. Biol. Chem. 269:6072–6082 (1994).PubMedGoogle Scholar
  88. 88.
    O. Meier, and U. F. Greber. Adenovirus endocytosis. J. Gene Med. 6:S152–S163 (2004).PubMedGoogle Scholar
  89. 89.
    M. Kielian, and F. A. Rey. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat. Rev. 4:67–76 (2006).Google Scholar
  90. 90.
    J. J. Skehel, and D. C. Wiley. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69:531–569 (2000).PubMedGoogle Scholar
  91. 91.
    W. Garten, S. Hallenberger, D. Ortmann, W. Schafer, M. Vey, H. Angliker, E. Shaw, and H. D. Klenk. Processing of viral glycoproteins by the substilin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie 76:217–225 (1994).PubMedGoogle Scholar
  92. 92.
    B. Adam, L. Lins, V. Stroobant, A. Thomas, and R. Brasseur. Distribution of hydrophobic residues is crucial for the fusogenic properties of the Ebola virus GP2 fusion peptide. J. Virol. 78:2131–2136 (2004).PubMedGoogle Scholar
  93. 93.
    X. Li, B. McDermott, B. Yuan, and S. P. Goff. Homomeric interactions between transmembrane proteins of Moloney murine leukemia virus. J. Virol. 70:1266–1270 (1996).PubMedGoogle Scholar
  94. 94.
    B. J. Bosch, R. Van der Zee, C. A. de Haan, and P. J. Rottier. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77:8801–8811 (2003).PubMedGoogle Scholar
  95. 95.
    F. A. Rey, F. X. Heinz, C. Mandl, C. Kunz, and S. C. Harrison. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 (1995).PubMedGoogle Scholar
  96. 96.
    J. Lescar, A. Roussel, M. W. Wien, J. Navaza, S. D. Fuller, G. Wrengler, and F. A. Rey. The fusion glycoprotein shell of Semliki Forest virus: an isocahedral assembly primed for fusogenic activation at endosomal pH. Cell 205:237–148 (2001).Google Scholar
  97. 97.
    Z. Oren, and Y. Shai. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 47:451–463 (1998).PubMedGoogle Scholar
  98. 98.
    Y. Shai. Mechanism of the binding, insertion and destabilization of phospholipids bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta. 1462:55–70 (1999).PubMedGoogle Scholar
  99. 99.
    Y. Pouny, D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipids membranes. Biochemistry 31:12416–12423 (1992).PubMedGoogle Scholar
  100. 100.
    A. Hinz, and H. J. Galla. Viral membrane penetration: lytic activity of nonviral fusion peptide. Eur. Biophys. J. 34:285–293 (2005).PubMedGoogle Scholar
  101. 101.
    P. Seth. Adenovirus-dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by the penton base protein. J. Virol. 68:1204–1206 (1994).PubMedGoogle Scholar
  102. 102.
    C. M. Wiethoff, H. Wodrich, L. Gerace, and G. R. Nemerow. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J. Virol. 79:1992–2000 (2005).PubMedGoogle Scholar
  103. 103.
    N. Miyazawa, R. G. Crystal, and P. L. Leopold. Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J. Virol. 75:1387–1400 (2001).PubMedGoogle Scholar
  104. 104.
    F. Zhang, P. Andreassen, P. Fender, E. Geissier, J. F. Hernandez, and J. Chroboczek. A transfecting peptide derived from adenovirus fiber protein. Gene Ther. 6:171–181 (1999).PubMedGoogle Scholar
  105. 105.
    N. Kamper, P. M. Day, T. Nowak, H. C. Selinka, L. Florin, J. Bolscher, L. Hilbig, J. T. Schiller, and M. Sapp. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J. Virol. 80:759–768 (2006).PubMedGoogle Scholar
  106. 106.
    D. Schober, P. Kronenberger, E. Prchla, D. Blaas, and R. Fuchs. Major and minor receptor group human rhinoviruses penetrate from endosomes by different mechanisms. J. Virol. 72:1354–1364 (1998).PubMedGoogle Scholar
  107. 107.
    G. Ehrenstein, and H. Lecar. Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 10:1–34 (1977).PubMedCrossRefGoogle Scholar
  108. 108.
    M. Brabec, D. Schober, E. Wagner, N. Bayer, R. F. Murphy, D. Blaas, and R. Fuchs. Opening of size-selective pores in endosomes during human rhinovirus serotype 2 in vivo uncoating monitored by single-organelle flow analysis. J. Virol. 79:1008–1016 (2005).PubMedGoogle Scholar
  109. 109.
    E. Prchla, C. Plank, E. Wagner, D. Blaas, and R. Fuchs. Virus-mediated release of endosomal content in vitro: different behavior of adenovirus and rhinovirus serotype 2. J. Cell Biol. 131:111–123 (1995).PubMedGoogle Scholar
  110. 110.
    P. Danthi, M. Tosteson, Q. Li, and M. Chow. Genome delivery and ion channel properties are altered in VP4 mutans of poliovirus. J. Virol. 77:5266–5274 (2003).PubMedGoogle Scholar
  111. 111.
    M. T. Tosteson, H. Wang, A. Naumov, and M. Chow. Poliovirus binding to its receptor in lipid bilayers results in particle-specific, temperature-sensitive channels. J. General Virol. 85:1581–1589 (2004).Google Scholar
  112. 112.
    S. Suikkanen, M. Antila, A. Jaatinen, M. Vihinen-Ranta, and M. Vuento. Release of canine parvovirus from endocytic vesicles. Virol 316:267–280 (2003).Google Scholar
  113. 113.
    Z. Zadori, J. Szelei, M. C. Lacoste, Y. Li, S. Gariepy, P. Raymond, M. Allaire, I. R. Nabi, and P. Tijssen. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell. 1:291–302 (2001).PubMedGoogle Scholar
  114. 114.
    M.A. Agosto, T. Ivanovic, and M.L. Nibert. Mammalian reovirus, a non-fusogenic non-enveloped virus, forms size-selective pores in a model membrane. Proc. Natl. Acad. Sci. 103:16496–16501 (2006).PubMedGoogle Scholar
  115. 115.
    M. Galloux, S. Libersou, N. Morellet, S. Bouaziz, B. Da Costa, M. Ouldali, J. Lepault, and B. Delmas. Infectious bursal disease virus, a non-enveloped virus, posses a capsid-associated peptide that deforms and perforates biological membranes. J. Biol. Chem. 282:20774–20784 (2007).PubMedGoogle Scholar
  116. 116.
    S.H. Hassan, C. Wirblich, M. Forzan, and P. Roy. Expression and functional characterization of bluetongue virus VP5 protein: role in cellular permeabilization. J. Virol. 75:8356–8367 (2001).PubMedGoogle Scholar
  117. 117.
    J. M. Diprose, J. N. Burroughs, G. C. Sutton, A. Goldsmith, P. Gouet, R. Malby, I. Overton, S. Zientara, P. P. Mertens, D. I. Stuart, and J. M. Grimes. Translocation portals for the substrates and products of a viral transcriptions complex: the bluetongue virus. EMBO J. 20:7229–7239 (2001).PubMedGoogle Scholar
  118. 118.
    W. Dowling, E. Denisova, R. Lamonica, and E. R. Mackow. Selective membrane permeabilization by the rotavirus VP5* protein is abrogated by mutations in an internal hydrophobic domain. J. Virol. 74:6368–6376 (2000).PubMedGoogle Scholar
  119. 119.
    S. A. Kelkar, K. K. Pfister, R. G. Crystal, and P. L. Leopold. Cytoplasmic dynein mediates adenovirus binding to microtubules. J. Virol. 78:10122–10132 (2004).PubMedGoogle Scholar
  120. 120.
    M. Suomalainen, M. Y. Nakano, S. Keller, S. Boucke, R. P. Stidwill, and U. F. Greber. Microtubule-dependent plus- and minus end-directed motilities are competing process for nuclear targeting of adenovirus. J. Cell Biol. 144:657–672 (1999).PubMedGoogle Scholar
  121. 121.
    U. F. Greber, and A. Fassati. Nuclear import of viral DNA genomes. Traffic. 4:136–143 (2003).PubMedGoogle Scholar
  122. 122.
    A. C. Saphire, T. Guan, E. C. Schirmer, G. R. Nemerow, and L. Gerace. Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J. Biol. Chem. 275:4298–4304 (2000).PubMedGoogle Scholar
  123. 123.
    L. Pelkmans, and A. Helenius. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15:414–422 (2003).PubMedGoogle Scholar
  124. 124.
    J. L. Brodsky. The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic reticulum-associated degradation). Biochem. J. 404:353–363 (2007).PubMedGoogle Scholar
  125. 125.
    L. C. Norkin, H. A. Anderson, S. A. Wolfrom, and A. Oppenheim. Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J. Virol. 76:5156–5166 (2002).PubMedGoogle Scholar
  126. 126.
    S. Le Gall, A. Neuhof, and T. Rapoport. The endoplasmic reticulum membrane is permeable to small molecules. Mol. Biol. Cell. 15:447–455 (2004).PubMedGoogle Scholar
  127. 127.
    R. Daniels, N. M. Rusan, P. Wadsworth, and D. N. Hebert. SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol. Cell. 24:955–966 (2006).PubMedGoogle Scholar
  128. 128.
    A. Nakanishi, N. Itoh, P. Li, H. Handa, R. C. Liddington, and H. Kasamatsu. Minor capsid proteins of simian virus 40 are dispensable for nucleocapsid assembly and cell entry but are required for nuclear entry of the viral genome. J. Virol. 81:3778–3785 (2007).PubMedGoogle Scholar
  129. 129.
    L. Sun, D. Liu, and Z. Wang. Functional gold nanoparticle-peptide complexes as cell-targeting agents. Langmuir. 24:10293–10297 (2008).PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  1. 1.Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan

Personalised recommendations