The AAPS Journal

, 10:565 | Cite as

Epidermal Growth Factor Receptor-Targeted Gelatin-Based Engineered Nanocarriers for DNA Delivery and Transfection in Human Pancreatic Cancer Cells

Research Article

Abstract

Type B gelatin-based engineered nanocarrier systems (GENS) have been used over the last several years as a non-condensing systemic and oral DNA delivery system. In this study, we have modified the surface of GENS with epidermal growth factor receptor (EGFR)-targeting peptide for gene delivery and transfection in pancreatic cancer cell lines. GENS were prepared by the solvent displacement method and the EGFR-targeting peptide was grafted on the surface using a hetero-bifunctional poly(ethylene glycol) (PEG) spacer. Plasmid DNA, encoding for enhanced green fluorescent protein (GFP), was efficiently encapsulated and protected from degrading enzymes in the control and surface-modified GENS. Upon incubation with EGFR over-expressing Panc-1 human pancreatic adenocarcinoma cells, the peptide-modified nanoparticles were found to be internalized efficiently by receptor-mediated endocytosis. Both quantitative and qualitative transgene expression efficiencies were significantly enhanced when plasmid DNA was administered with EGFR-targeted GENS relative to the control-unmodified gelatin or PEG-modified gelatin nanoparticle systems. Based on these preliminary results, EGFR-targeted GENS show tremendous promise as a safe and effective gene delivery vector with the potential to treat pancreatic cancer.

Key words

EGFP-N1 plasmid DNA EGFR-targeted delivery Panc-1 human pancreatic adenocarcinoma cells transgene expression type B gelatin nanoparticles 

References

  1. 1.
    A. Jemal, R. C. Tiwari, T. Murray, A. Ghafoor, A. Samuels, E. Ward, E. J. Feuer, and M. J. Thun. Cancer statistics, 2004. CA Cancer J. Clin. 54:8–29 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    B. E. Huber. Gene therapy strategies for treating neoplastic disease. Ann. N. Y. Acad. Sci. 716:6–11 (1994). discussion 20–12.PubMedCrossRefGoogle Scholar
  3. 3.
    J. A. Roth. Adenovirus p53 gene therapy. Expert. Opin. Biol. Ther. 6:55–61 (2006).PubMedCrossRefGoogle Scholar
  4. 4.
    J. A. Roth. Gene replacement strategies for lung cancer. Curr. Opin. Oncol. 10:127–132 (1998).PubMedCrossRefGoogle Scholar
  5. 5.
    J. A. Roth. Gene replacement strategies for cancer. Isr. J. Med. Sci. 32:89–94 (1996).PubMedGoogle Scholar
  6. 6.
    J. A. Roth, and S. F. Grammer. Gene replacement therapy for non-small cell lung cancer: a review. Hematol. Oncol. Clin. North Am. 18:215–229 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    J. A. Roth, and S. F. Grammer. Tumor suppressor gene therapy. Methods Mol. Biol. 223:577–598 (2003).PubMedGoogle Scholar
  8. 8.
    J. A. Roth, S. F. Grammer, S. G. Swisher, R. Komaki, J. Nemunaitis, J. Merritt, and R. E. Meyn. P53 gene replacement for cancer-interactions with DNA damaging agents. Acta. Oncol. 40:739–744 (2001).PubMedCrossRefGoogle Scholar
  9. 9.
    J. A. Roth, S. G. Swisher, and R. E. Meyn. p53 tumor suppressor gene therapy for cancer. Oncology (Williston Park). 13:148–154 (1999).Google Scholar
  10. 10.
    P. D. Wadhwa, S. P. Zielske, J. C. Roth, C. B. Ballas, J. E. Bowman, and S. L. Gerson. Cancer gene therapy: scientific basis. Annu. Rev. Med. 53:437–452 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Jacob, J. J. Davis, L. Zhang, H. Zhu, F. Teraishi, and B. Fang. Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter. Cancer Gene Ther. 12(2):109–115 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    A. S. Pearson, M. Bouvet, D. B. Evans, and J. A. Roth. Gene therapy and pancreatic cancer. Front Biosci. 3:E230–237 (1998).PubMedGoogle Scholar
  13. 13.
    T. Blessing, J. S. Remy, and J. P. Behr. Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc. Natl. Acad. Sci. U. S. A. 95(4):1427–1431 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    E. Marshall. Gene therapy on trial. Science. 288:951–957 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    E. Check. Gene therapy: shining hopes dented—but not dashed. Nature. 420:735 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    C. E. Thomas, A. Ehrhardt, and M. A. Kay. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4(5):346–358 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release. 114(1):100–109 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Panyam, and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55:329–347 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Dellian, F. Yuan, V. S. Trubetskoy, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer. 82(9):1513–1518 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    M. D. Bhavsar, and M. M. Amiji. Development of novel biodegradable polymeric nanoparticles-in-microsphere formulation for local plasmid DNA delivery in the gastrointestinal tract. AAPS PharmSciTech. 9:288–294 (2008).PubMedCrossRefGoogle Scholar
  21. 21.
    M. D. Bhavsar, and M. M. Amiji. Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene. Ther. 15(17):1200–1209 (2008).PubMedCrossRefGoogle Scholar
  22. 22.
    M. D. Bhavsar, and M. M. Amiji. Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J. Control. Release. 119:339–348 (2007).PubMedCrossRefGoogle Scholar
  23. 23.
    M. D. Bhavsar, S. B. Tiwari, and M. M. Amiji. Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Release. 110:422–430 (2006).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Kaul, and M. Amiji. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target. 12:585–591 (2004).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Kaul, and M. Amiji. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22:951–961 (2005).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Kommareddy, and M. Amiji. Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine. 3:32–42 (2007).PubMedGoogle Scholar
  27. 27.
    S. Kommareddy, and M. Amiji. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J. Pharm. Sci. 96:397–407 (2007).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Kommareddy, and M. Amiji. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug. Chem. 16:1423–1432 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Kommareddy, and M. Amiji. Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther. 14:488–498 (2007).PubMedCrossRefGoogle Scholar
  30. 30.
    C. Neves, V. Escriou, G. Byk, D. Scherman, and P. Wils. Intracellular fate and nuclear targeting of plasmid DNA. Cell Boil. Toxicol. 15:193–202 (1999).CrossRefGoogle Scholar
  31. 31.
    K. Tobita, H. Kijima, S. Dowaki, H. Kashiwagi, Y. Ohtani, Y. Oida, H. Yamazaki, M. Nakamura, Y. Ueyama, M. Tanaka, S. Inokuchi, and H. Makuuchi. Epidermal growth factor receptor expression in human pancreatic cancer: significance for liver metastasis. Int. J. Mol. Med. 11:305–309 (2003).PubMedGoogle Scholar
  32. 32.
    Y. Yamanaka, H. Friess, M. S. Kobrin, M. Buchler, H. G. Beger, and M. Korc. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res. 13:565–569 (1993).PubMedGoogle Scholar
  33. 33.
    T. A. Jarvinen, and E. Ruoslahti. Molecular changes in the vasculature of injured tissues. Am. J. Pathol. 171:702–711 (2007).PubMedCrossRefGoogle Scholar
  34. 34.
    Z. Li, R. Zhao, X. Wu, Y. Sun, M. Yao, J. Li, Y. Xu, and J. Gu. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J. 19:1978–1985 (2005).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Zitzmann, V. Ehemann, and M. Schwab. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res. 62:5139–5143 (2002).PubMedGoogle Scholar
  36. 36.
    V. Guillemard, H. Nedev, A. Berezov, R. Murali, and H. U. Saragovi. HER2-mediated internalization of a targeted prodrug cytotoxic conjugate is dependent on the valency of the targeting ligand. DNA Cell Biol. 24(6):351–358 (2005).CrossRefGoogle Scholar
  37. 37.
    P. Chan, H. P. Nestler, and W. T. Miller. Investigating the substrate specificity of the HER2/Neu tyrosine kinase using peptide libraries. Cancer Lett. 160(2):159–169 (2000).PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, School of PharmacyNortheastern UniversityBostonUSA

Personalised recommendations