The AAPS Journal

, Volume 10, Issue 3, pp 494–503 | Cite as

Surface Energy of Microcrystalline Cellulose Determined by Capillary Intrusion and Inverse Gas Chromatography

  • D. Fraser Steele
  • R. Christian Moreton
  • John N. Staniforth
  • Paul M. Young
  • Michael J. Tobyn
  • Stephen Edge
Research Article

Abstract

Surface energy data for samples of microcrystalline cellulose have been obtained using two techniques: capillary intrusion and inverse gas chromatography. Ten microcrystalline cellulose materials, studied using capillary intrusion, showed significant differences in the measured surface energetics (in terms of total surface energy and the acid–base characteristics of the cellulose surface), with variations noted between the seven different manufacturers who produced the microcrystalline cellulose samples. The surface energy data from capillary intrusion was similar to data obtained using inverse gas chromatography with the column maintained at 44% relative humidity for the three samples of microcrystalline cellulose studied. This suggests that capillary intrusion may be a suitable method to study the surface energy of pharmaceutical samples.

Key words

capillary intrusion dynamic contact angle excipient inverse gas chromatography microcrystalline cellulose surface energy 

References

  1. 1.
    R. J. Good. Contact angle, wetting, and adhesion—a critical review. J. Adhes. Sci. Technol. 6(12):1269–1302 (1992).CrossRefGoogle Scholar
  2. 2.
    C. M. Lehr, J. A. Bouwstra, H. E. Bodde, and H. E. Junginger. A surface-energy analysis of mucoadhesion—contact-angle measurements on polycarbophil and pig intestinal-mucosa in physiologically relevant fluids. Pharm. Res. 9(1):70–75 (1992).PubMedCrossRefGoogle Scholar
  3. 3.
    C. M. Lehr, H. E. Bodde, J. A. Bouwstra, and H. E. Junginger. A surface-energy analysis of mucoadhesion.2. prediction of mucoadhesive performance by spreading coefficients. Eur. J. Pharm. Sci. 1(1):19–30 (1993).CrossRefGoogle Scholar
  4. 4.
    E. Oh, and P. E. Luner. Surface free energy of ethylcellulose films and the influence of plasticizers. Int. J. Pharm. 188(2):03–219 (1999).CrossRefGoogle Scholar
  5. 5.
    G. Buckton. The estimation and application of surface-energy data for powdered systems. Drug Dev. Ind. Pharm. 18(11–12):1149–1167 (1992).CrossRefGoogle Scholar
  6. 6.
    B. C. Hancock, P. York, and R. C. Rowe. The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 148(1):1–21 (1997).CrossRefGoogle Scholar
  7. 7.
    F. Dourado, F. M. Gama, E. Chibowski, and M. Mota. Characterization of cellulose surface free energy. Drug Dev. Ind. Pharm. 12(10):1081–1090 (1998).Google Scholar
  8. 8.
    X. Pepin, S. Blanchon, and G. Couarraze. Powder dynamic contact angle data in the pharmaceutical industry. Pharm. Sci. Technol. Today. 2(3):111–118 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    I. J. Hardy, and W. G. Cook. Predictive and correlative techniques for the design, optimisation and manufacture of solid dosage forms. J. Pharm. Pharmacol. 55(1):3–18 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    N. M. Ahfat, G. Buckton, R. Burrows, and M. D. Ticehurst. Predicting mixing performance using surface energy measurements. Int. J. Pharm. 156(1):89–95 (1997).CrossRefGoogle Scholar
  11. 11.
    R. C. Rowe. Correlation between predicted binder spreading coefficients and measured granule and tablet properties in the granulation of paracetamol. Int. J. Pharm. 58(3):209–213 (1990).CrossRefGoogle Scholar
  12. 12.
    O. Planinšek, R. Pišek, A. Trojak, and S. Srcic. The utilization of surface free-energy parameters for the selection of a suitable binder in fluidized bed granulation. Int. J. Pharm. 207(1–2):77–88 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    P. M. Young, S. Edge, D. F. Steele, J. N. Staniforth, R. Price. Dynamic vapour sorption properties of sodium starch glycolate disintegrants. Pharm. Dev. Technol. 10(2):249–259 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Zografi, and M. J. Kontny. The interactions of water with cellulose derived and starch derived pharmaceutical excipients. Pharm. Res. 3(4):187–194 (1986).CrossRefGoogle Scholar
  15. 15.
    G. Zografi, M. J. Kontny, A. Y. S. Yang, and G. S. Brenner. Surface area and water vapor sorption of microcrystalline cellulose. Int. J. Pharm. 18(1–2):99–116 (1984).CrossRefGoogle Scholar
  16. 16.
    N. D. Lang, and W. Kohn. Theory of metal surfaces—charge density and surface energy. Phys. Rev., B. 1(12):4555–4568 (1970).CrossRefGoogle Scholar
  17. 17.
    B. Lawn. Fracture of brittle solids. Cambridge University Press: 1993; p 378.Google Scholar
  18. 18.
    P. N. Jacob, and J. C. Berg. Acid-base surface-energy characterization of microcrystalline cellulose and 2 wood pulp fiber types using inverse gas-chromatography. Langmuir. 10(9):3086–3093 (1994).CrossRefGoogle Scholar
  19. 19.
    M. Gindl, G. Sinn, W. Gindl, A. Reiterer, and S. Tschegg. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf., A Physicochem. Eng. Asp. 181(1–3):279–287 (2001).CrossRefGoogle Scholar
  20. 20.
    P. K. Sharma, and K. H. Rao. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv. Colloid Interface Sci. 98(3):341–463 (2002).PubMedCrossRefGoogle Scholar
  21. 21.
    C. D. Volpe, and S. Siboni. Analysis of dynamic contact angle on discoidal samples measured by the Wilhelmy method. J. Adhes. Sci. Technol. 12(2):197–224 (1998).CrossRefGoogle Scholar
  22. 22.
    O. Planinšek, A. Trojak, and S. Srcic. The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurements. Int. J. Pharm. 221(1–2):211–217 (2001).PubMedCrossRefGoogle Scholar
  23. 23.
    V. Kumar, and S. H. Kothari. Effect of compressional force on the crystallinity of directly compressible cellulose excipients. Int. J. Pharm. 177(2):173–182 (1999).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Edge, D. F. Steele, M. J. Tobyn, J. N. Staniforth, and A. Chen. Directional bonding in compacted microcrystalline cellulose. Drug Dev. Ind. Pharm. 27(7):613–621 (2001).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Khan, J. T. Fell, and G. S. Macleod. The influence of additives on the spreading coefficient and adhesion of a film coating formulation to a model tablet surface. Int. J. Pharm. 227(1–2):113–119 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Buckton, and J. M. Newton. Assessment of the wettability of powders by the use of compressed powder discs. Powder Technol. 46:201–208 (1986).CrossRefGoogle Scholar
  27. 27.
    G. Buckton. Assessment of the wettability of pharmaceutical powders. In K. L. Mittal (ed.), Contact Angle, Wettability and Adhesion, 437–451 (1993).Google Scholar
  28. 28.
    T. R. Desai, D. Q. Li, W. H. Finlay, and J. P. Wong. Determination of surface free energy of interactive dry powder liposome formulations using capillary penetration technique. Colloids Surf., B Biointerfaces. 22(2):107–113 (2001).CrossRefGoogle Scholar
  29. 29.
    P. K. Sharma, K. H. Rao, K. S. E. Forssberg, and K. A. Natarajan. Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide minerals. Int. J. Miner. Process. 62(1–4):3–25 (2001).CrossRefGoogle Scholar
  30. 30.
    C. J. van Oss. Acid–base interfacial interactions in aqueous media. Colloids Surf., A Physicochem. Eng. Asp. 78:1–49 (1993).CrossRefGoogle Scholar
  31. 31.
    M. de Meijer, S. Haemers, W. Cobben, and H. Militz. Surface energy determinations of wood: Comparison of methods and wood species. Langmuir. 16(24):9352–9359 (2000).CrossRefGoogle Scholar
  32. 32.
    J. Schultz, L. Lavielle, and C. Martin. The role of the interface in carbon-fiber epoxy composites. J. Adhes. 23(1):45–60 (1987).CrossRefGoogle Scholar
  33. 33.
    V. Gutmann. The Donor-acceptor approach to molecular interactions, Plenum, New York, 1978.Google Scholar
  34. 34.
    F. L. Riddle, and F. M. Fowkes. Spectral shifts in acid–base chemistry.1. vanderwaals contributions to acceptor numbers. J. Am. Chem. Soc. 112(9):3259–3264 (1990).CrossRefGoogle Scholar
  35. 35.
    D. Cline, and R. Dalby. Predicting the quality of powders for inhalation from surface energy and area. Pharm. Res. 19(9):1274–1277 (2002).PubMedCrossRefGoogle Scholar
  36. 36.
    C. J. Van Oss. Acid–base interfacial interactions in aqueous-media. Colloids Surf., A Physicochem. Eng. Asp. 78:1–49 (1993).CrossRefGoogle Scholar
  37. 37.
    C. J. Van Oss, R. F. Giese, and W. Wu. On the predominant electron-donicity of polar solid surfaces. J. Adhes. 63(1–3):71–88 (1997).Google Scholar
  38. 38.
    W. Wu, R. F. Giese, and C. J. VanOss. Change in surface properties of solids caused by grinding. Powder Technol. 89(2):129–132 (1996).CrossRefGoogle Scholar
  39. 39.
    M. N. Belgacem, G. Czeremuszkin, S. Sapieha, and A. Gandini. Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose. 2(3):145–157 (1995).CrossRefGoogle Scholar
  40. 40.
    H. A. Krässig. Cellulose. structure, accessibility and reactivity, 11:Gordon and Breach Science, Amsterdam, 1993, p. 376.Google Scholar
  41. 41.
    M. A. Tshabalala. Determination of the acid–base characteristics of lignocellulosic surfaces by inverse gas chromatography. J. Appl. Polym. Sci. 65(5):1013–1020 (1997).CrossRefGoogle Scholar
  42. 42.
    M. D. Ticehurst, R. C. Rowe, and P. York. Determination of the surface properties of 2 batches of salbutamol sulfate by inverse gas chromatography. Int. J. Pharm. 111(3):241–249 (1994).CrossRefGoogle Scholar
  43. 43.
    M. G. Vachon, and D. Chulia. The use of energy indices in estimating powder compaction functionality of mixtures in pharmaceutical tableting. Int. J. Pharm. 177(2):183–200 (1999).PubMedCrossRefGoogle Scholar
  44. 44.
    B. E. Sherwood, and J. W. Becker. A new class of high functionality excipients: silicified microcrystalline cellulose. Pharm. technol. 22:78–88 (1998).Google Scholar
  45. 45.
    M. T. Guo, F. X. Muller, and L. L. Augsburger. Evaluation of the plug formation process of silicified microcrystalline cellulose. Int. J. Pharm. 233(1–2):99–109 (2002).PubMedCrossRefGoogle Scholar
  46. 46.
    S. Edge, D. F. Steele, A. S. Chen, M. J. Tobyn, and J. N. Staniforth. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int. J. Pharm. 200(1):67–72 (2000).PubMedCrossRefGoogle Scholar
  47. 47.
    D. F. Steele, M. Tobyn, S. Edge, A. S. Chen, and J. N. Staniforth. Physicochemical and mechanical evaluation of a novel high density grade of silicified microcrystalline cellulose. Drug Dev. Ind. Pharm. 30(1):103–109 (2004).PubMedCrossRefGoogle Scholar
  48. 48.
    G. Czeremuszkin, P. Mukhopadhyay, and S. Sapieha. Elution behavior of chemically different probes on the evaluation of surface properties of cellulose by inverse gas chromatography. J. Colloid Interface Sci. 194(1):127–137 (1997).PubMedCrossRefGoogle Scholar
  49. 49.
    J. S. Wu, H. O. Ho, and M. T. Sheu. A statistical design to evaluate the influence of manufacturing factors and material properties on the mechanical performances of microcrystalline cellulose. Powder Technol. 118(3):219–228 (2001).CrossRefGoogle Scholar
  50. 50.
    R. O. Williams, M. Sriwongjanya, and M. K. Barron. Compaction properties of microcrystalline cellulose using tableting indices. Drug Dev. Ind. Pharm. 23(7):695–704 ( 1997).CrossRefGoogle Scholar
  51. 51.
    F. Podczeck, and P. Revesz. Evaluation of the properties of microcrystalline and microfine cellulose powders. Int. J. Pharm. 91(2–3):183–193 (1993).CrossRefGoogle Scholar
  52. 52.
    D. F. Steele, S. Edge, M. J. Tobyn, R. C. Moreton, and J. N. Staniforth. Adsorption of an amine drug onto microcrystalline cellulose and silicified microcrystalline cellulose samples. Drug Dev. Ind. Pharm. 29(4):475–487 (2003).PubMedCrossRefGoogle Scholar
  53. 53.
    S. Okada, H. Nakahara, and H. Isaka. Adsorption of drugs on microcrystalline cellulose suspended in aqueous-solutions. Chem. Pharm. Bull. 35(2):761–768 (1987).Google Scholar
  54. 54.
    R. C. Rowe, A. G. McKillop, and D. Bray. The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int. J. Pharm. 101(1–2):169–172 (1994).CrossRefGoogle Scholar
  55. 55.
    M. Landin, R. Martinezpacheco, J. L. Gomezamoza, C. Souto, A. Concheiro, and R. C. Rowe. Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int. J. Pharm. 91(2–3):133–141 (1993).CrossRefGoogle Scholar
  56. 56.
    W. A. Zisman. Relationship of equilibrium contact angle to liquid and solid constitution. In F. M Fowkes (ed.), Contact Angle, Wettability and Adhesion 43:1–51 (1964).Google Scholar
  57. 57.
    E. Papirer, E. Brendle, H. Balard, and C. Vergelati. Inverse gas chromatography investigation of the surface properties of cellulose. J. Adhes. Sci. Technol. 14(3):321–337 (2000).CrossRefGoogle Scholar
  58. 58.
    G. Garnier, and W. G. Glasser. Measurement of the surface free-energy of amorphous cellulose by alkane adsorption—a critical evaluation of inverse gas chromatography (IGC). J. Adhes. 46(1–4):165–180 (1994).CrossRefGoogle Scholar
  59. 59.
    H. P. Nguyen, N. T. Ho, M. Buchmann, and U. W. Kesselring. Experimentally optimized determination of the partial and total cohesion parameters of an insoluble polymer (Microcrystalline Cellulose) by gas solid chromatography. Int. j. pharm. 34(3):217–223 (1987).CrossRefGoogle Scholar
  60. 60.
    U. Weise. Hornification—mechanisms and terminology. Paperi ja Puu—Paper and Timber. 80(2):110–115 (1998).Google Scholar
  61. 61.
    K. Marshall, D. Sixsmith, and N. G. Stanley-Wood. Surface geometry of some microcrystalline celluloses. J. Pharm. Pharmacol. Suppl. 24:138P (1972).Google Scholar
  62. 62.
    A. P. Heiner, L. Kuutti, and O. Teleman. Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohydr. Res. 306(1–2):205–220 (1998).CrossRefGoogle Scholar
  63. 63.
    M. Jarvis. Chemistry—cellulose stacks up. Nature. 426(6967):611–612 (2003).PubMedCrossRefGoogle Scholar
  64. 64.
    J. M. Park, D. S. Kim, J. W. Kong, M. Kim, W. Kim, and I. S. Park. Interfacial adhesion and microfailure modes of electrodeposited carbon fiber/epoxy–PEI composites by microdroplet and surface wettability tests. J. Colloid Interface Sci. 249(1):62–77 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  • D. Fraser Steele
    • 1
    • 4
  • R. Christian Moreton
    • 2
  • John N. Staniforth
    • 1
  • Paul M. Young
    • 3
  • Michael J. Tobyn
    • 1
  • Stephen Edge
    • 1
  1. 1.Pharmaceutical Technology Research Group, Department of Pharmacy & PharmacologyUniversity of BathBathUK
  2. 2.FinnBrit ConsultingWalthamUSA
  3. 3.Advanced Drug Delivery GroupUniversity of SydneySydneyAustralia
  4. 4.Drug Delivery Solutions LtdLeatherhead Enterprise CentreLeatherheadUK

Personalised recommendations