Skip to main content
Log in

Prodrug Approaches for CNS Delivery

  • Research Article/Themed Issue: Current Advances in CNS Delivery of Therapeutic Molecules Guest Editors: Jean-Michel Scherrmann a
  • Themed Issue: Current Advances in CNS Delivery of Therapeutic Molecules Guest Editors: Jean-Michel Scherrmann and Craig K. Svens
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Central nervous system (CNS) drug delivery remains a major challenge, despite extensive efforts that have been made to develop novel strategies to overcome obstacles. Prodrugs are bioreversible derivatives of drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which subsequently exerts the desired pharmacological effect. In both drug discovery and drug development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents that overcome barriers to a drug’s usefulness. This review provides insight into various prodrug strategies explored to date for CNS drug delivery, including lipophilic prodrugs, carrier- and receptor-mediated prodrug delivery systems, and gene-directed enzyme prodrug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. M. Pardridge. Why is the global CNS pharmaceutical market so under-penetrated. Drug Discov. Today. 7(1):5–7 (2002), Jan 1.

    PubMed  Google Scholar 

  2. W. M. Pardridge. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2(1):3–14 (2005), Jan.

    PubMed  Google Scholar 

  3. D. J. Begley. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 104(1):29–45 (2004), Oct.

    PubMed  CAS  Google Scholar 

  4. M. W. Bradbury. The structure and function of the blood–brain barrier. Fed. Proc. 43(2):186–190 (1984), Feb.

    PubMed  CAS  Google Scholar 

  5. R. C. Janzer, and M. C. Raff. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 325(6101):253–257 (1987). Jan 15–21.

    PubMed  CAS  Google Scholar 

  6. J. H. Kim, J. H. Kim, J. A. Park, et al. Blood–neural barrier: intercellular communication at glio–vascular interface. J. Biochem. Mol. Biol. 39(4):339–345 (2006), Jul 31.

    PubMed  CAS  Google Scholar 

  7. C. H. Lai, and K. H. Kuo. The critical component to establish in vitro BBB model: Pericyte. Brain Res. Brain Res. Rev. 50(2):258–265 (2005), Dec 15.

    PubMed  CAS  Google Scholar 

  8. D. J. Begley. The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system. J. Pharm. Pharmacol. 48(2):136–146 (1996), Feb.

    PubMed  CAS  Google Scholar 

  9. W. Loscher, and H. Potschka. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2(1):86–98 (2005), Jan.

    PubMed  Google Scholar 

  10. A. H. Schinkel. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv. Drug. Deliv. Rev. 36(2–3):179–194 (1999), Apr 5.

    PubMed  CAS  Google Scholar 

  11. D. J. Begley. ABC transporters and the blood–brain barrier. Curr. Pharm. Des. 10(12):1295–1312 (2004).

    PubMed  CAS  Google Scholar 

  12. W. M. Pardridge, and W. H. Oldendorf. Transport of metabolic substrates through the blood–brain barrier. J. Neurochem. 28(1):5–12 (1977), Jan.

    PubMed  CAS  Google Scholar 

  13. W. M. Pardridge. Blood–brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain. Curr. Opin. Drug. Discov. Devel. 6(5):683–691 (2003), Sep.

    PubMed  CAS  Google Scholar 

  14. T. Halmos, M. Santarromana, J. Herscovici, and D. Scherman. Brain drug delivery through the blood–brain barrier transport systems. Attempted strategies and issues. STP Pharma. Sci. 7:37–42 (1997).

    CAS  Google Scholar 

  15. C. Yang, G. S. Tirucherai, and A. K. Mitra. Prodrug based optimal drug delivery via membrane transporter/receptor. Expert Opin. Biol. Ther. 1(2):159–175 (2001), Mar.

    PubMed  CAS  Google Scholar 

  16. W. M. Pardridge. Blood–brain barrier delivery. Drug Discov. Today. 12(1–2):54–61 (2007), Jan.

    PubMed  CAS  Google Scholar 

  17. A. Albert. Chemical aspects of selective toxicity. Nature. 182:421–422 (1958).

    PubMed  CAS  Google Scholar 

  18. A. A. Sinkula, and S. H. Yalkowsky. Rationale for design of biologically reversible drug derivatives: prodrugs. J. Pharm. Sci. 64(2):181–210 (1975), Feb.

    PubMed  CAS  Google Scholar 

  19. V. J. Stella, W. N. Charman, and V. H. Naringrekar. Prodrugs. Do they have advantages in clinical practice? Drugs. 29(5):455–473 (1985), May.

    CAS  Google Scholar 

  20. V. J. Stella, R. T. Borchardt, M. J. Hageman, R. Oliyai, H. Maag, and J. W. Tilley. Prodrugs: Challenges and Rewards. Vol. 1–2. Published by AAPS Press and Springer, New York, (2007).

    Google Scholar 

  21. R. F. Sherwood. Advanced drug delivery reviews: Enzyme prodrug therapy. Adv. Drug Del. Rev. 22:269–288 (1996).

    CAS  Google Scholar 

  22. V. Stella. Prodrug strategies for improving drug-like properties. In R. Borchardt, M. Hageman, J. Stevens, E. Kerns, and D. Thakker (eds.), Optimizing the “drug-like” properties of leads in drug discovery, Springer, New York, 2006, pp. 221–242.

    Google Scholar 

  23. V. J. Stella. Prodrugs as therapeutics. Expert Opin. Ther. Patents. 14(3):277–280 (2004).

    CAS  Google Scholar 

  24. V. J. Stella, and K. W. Nti-Addae. Prodrug strategies to overcome poor water solubility. Adv. Drug Deliv. Rev. 59:677–694 (2007), May 29.

    PubMed  CAS  Google Scholar 

  25. J. Rautio, H. Kumpulainen, T. Heimbach, et al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discovery. 7:1–16 (2008), Mar.

    Google Scholar 

  26. T. Järvinen, J. Rautio, M. Masson, and T. Loftsson. Design and pharmaceutical applications of prodrugs. In S. Gad (ed.), Drug discovery handbook. John Wiley & Sons, Inc., Hoboken, 2005, pp. 733–796.

    Google Scholar 

  27. K. Beaumont, R. Webster, I. Gardner, and K. Dack. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist. Curr. Drug Metab. 4(6):461–485 (2003), Dec.

    PubMed  CAS  Google Scholar 

  28. M. W. Brightman, and T. S. Reese. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell. Biol. 40(3):648–677 (1969), Mar.

    PubMed  CAS  Google Scholar 

  29. B. D. Anderson. Prodrug approaches for drug delivery to the brain. In V. J. Stella, R. T. Borchardt, M. J. Hageman, R. Oliyai, H. Maag, and J. W. Tilley (eds.), Prodrugs: Challenges and Rewards. Part 1. AAPS Press/Springer, New York, 2007, 573–651.

    Google Scholar 

  30. W. H. Oldendorf, S. Hyman, L. Braun, and S. Z. Oldendorf. Blood–brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science. 178(64):984–986 (1972), Dec 1.

    PubMed  CAS  Google Scholar 

  31. B. D. Anderson. Prodrugs for improved CNS delivery. Adv Drug Deliv Rev. 19:171–202 (1996).

    CAS  Google Scholar 

  32. N. H. Greig, S. Genka, E. M. Daly, D. J. Sweeney, and S. I. Rapoport. Physicochemical and pharmacokinetic parameters of seven lipophilic chlorambucil esters designed for brain penetration. Cancer Chemother Pharmacol. 25(5):311–319 (1990).

    PubMed  CAS  Google Scholar 

  33. S. Genka, J. Deutsch, U. H. Shetty et al. Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil. Clin Exp Metastasis. 11(2):131–140 (1993), Mar.

    PubMed  CAS  Google Scholar 

  34. N. Bodor, and P. Buchwald. Drug targeting via retrometabolic approaches. Pharmacol. Ther. 76(1–3):1–27 (1997), Oct–Dec.

    PubMed  CAS  Google Scholar 

  35. N. Bodor, and P. Buchwald. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv. Drug Deliv. Rev. 36(2–3):229–254 (1999), Apr 5.

    PubMed  CAS  Google Scholar 

  36. N. Bodor, and P. Buchwald. Barriers to remember: brain-targeting chemical delivery systems and Alzheimer's disease. Drug. Discov. Today. 7(14):766–774 (2002), Jul 15.

    PubMed  CAS  Google Scholar 

  37. L. Prokai, K. Prokai-Tatrai, and N. Bodor. Targeting drugs to the brain by redox chemical delivery systems. Med. Res. Rev. 20(5):367–416 (2000), Sep.

    PubMed  CAS  Google Scholar 

  38. M. E. Brewster, W. R. Anderson, D. O. Helton, N. Bodor, and E. Pop. Dose-dependent brain delivery of zidovudine through the use of a zidovudine chemical delivery system. Pharm. Res. 12(5):796–798 (1995), May.

    PubMed  CAS  Google Scholar 

  39. M. E. Brewster, W. R. Anderson, A. I. Webb et al. Evaluation of a brain-targeting zidovudine chemical delivery system in dogs. Antimicrob Agents Chemother. 41(1):122–128 (1997), Jan.

    PubMed  CAS  Google Scholar 

  40. M. E. Brewster, K. Raghavan, E. Pop, and N. Bodor. Enhanced delivery of ganciclovir to the brain through the use of redox targeting. Antimicrob. Agents. Chemother. 38(4):817–823 (1994), Apr.

    PubMed  CAS  Google Scholar 

  41. W. M. Wu, E. Pop, E. Shek, and N. Bodor. Brain-specific chemical delivery systems for beta-lactam antibiotics. In Vitro and in vivo studies of some dihydropyridine and dihydroisoquinoline derivatives of benzylpenicillin in rats. J. Med. Chem. 32(8):1782–1788 (1989), Aug.

    PubMed  CAS  Google Scholar 

  42. W. M. Wu, E. Pop, E. Shek, R. Clemmons, and N. Bodor. Brain and CSF specific chemical delivery systems for beta-lactam antibiotics. Study of two dihydropyridine derivatives of benzylpenicillin in rabbits and dogs. Drug Des. Deliv. 7(1):33–43 (1990), Dec.

    PubMed  CAS  Google Scholar 

  43. K. S. Estes, M. E. Brewster, J. W. Simpkins, and N. Bodor. A novel redox system for CNS-directed delivery of estradiol causes sustained LH suppression in castrate rats. Life Sci. 40(13):1327–1334 (1987), Mar 30.

    PubMed  CAS  Google Scholar 

  44. G. Mullersman, H. Derendorf, M. E. Brewster, K. S. Estes, and N. Bodor. High-performance liquid chromatographic assay of a central nervous system (CNS)-directed estradiol chemical delivery system and its application after intravenous administration to rats. Pharm. Res. Mar. 5(3):172–177 (1988).

    CAS  Google Scholar 

  45. D. K. Sarkar, S. J. Friedman, S. S. Yen, and S. A. Frautschy. Chronic inhibition of hypothalamic-pituitary-ovarian axis and body weight gain by brain-directed delivery of estradiol-17 beta in female rats. Neuroendocrinology. 50(2):204–210 (1989), Aug.

    PubMed  CAS  Google Scholar 

  46. T. Ishikura, T. Senou, H. Ishihara, T. Kato, and T. Ito. Drug delivery to the brain. DOPA prodrugs based on a ring-closure reaction to quaternary thiazolium compounds. Int. J. Pharm. 116(1):51 (1995).

    CAS  Google Scholar 

  47. X. Tan, F. D. Boudinot, C. K. Chu, et al. Pharmacokinetics of bis(t-butyl-SATE)-AZTMP, a bispivaloylthioethyl prodrug for intracellular delivery of zidovudine monophosphate, in mice. Antivir. Chem. Chemother. 11(3):203–211 (2000), May.

    PubMed  CAS  Google Scholar 

  48. G. Somogyi, P. Buchwald, and N. Bodor. Targeted drug delivery to the central nervous system via phosphonate derivatives (anionic delivery system for testosterone). Pharmazie. 57(2):135–137 (2002), Feb.

    PubMed  CAS  Google Scholar 

  49. G. Somogyi, S. Nishitani, D. Nomi, P. Buchwald, L. Prokai, and N. Bodor. Targeted drug delivery to the brain via phosphonate derivatives: I. Design, synthesis and evaluation of an anionic chemical delivery system for testosterone. Int. J. Pharm. 166(1):15 (1998).

    CAS  Google Scholar 

  50. G. Somogyi, P. Buchwald, D. Nomi, L. Prokai, and N. Bodor. Targeted drug delivery to the brain via phosphonate derivatives II. Anionic chemical delivery system for zidovudine (AZT). Int. J. Pharm. 166(1):27 (1998).

    CAS  Google Scholar 

  51. H. Chen, F. Noble, B. P. Roques, and M. C. Fournie-Zaluski. Long lasting antinociceptive properties of enkephalin degrading enzyme (NEP and APN) inhibitor prodrugs. J. Med. Chem. 44(21):3523–3530 (2001), Oct 11.

    PubMed  CAS  Google Scholar 

  52. I. Tamai, and A. Tsuji. Transporter-mediated permeation of drugs across the blood–brain barrier. J. Pharm. Sci. 89(11):1371–1388 (2000), Nov.

    PubMed  CAS  Google Scholar 

  53. B. S. Anand, S. Dey, and A. K. Mitra. Current prodrug strategies via membrane transporters/receptors. Expert. Opin. Biol. Ther. 2(6):607–620 (2002), Aug.

    PubMed  CAS  Google Scholar 

  54. S. Majumdar, S. Duvvuri, and A. K. Mitra. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv. Drug Deliv. Rev. 56(10):1437–1452 (2004), Jun 23.

    PubMed  CAS  Google Scholar 

  55. W. M. Pardridge. Drug targeting to the brain. Pharm. Res. 24(9):1733–1744 (2007), Sep.

    PubMed  CAS  Google Scholar 

  56. R. J. Boado, J. Y. Li, M. Nagaya, C. Zhang, and W. M. Pardridge. Selective expression of the large neutral amino acid transporter at the blood–brain barrier. Proc. Natl. Acad. Sci. U S A. 96(21):12079–12084 (1999), Oct 12.

    PubMed  CAS  Google Scholar 

  57. R. Duelli, B. E. Enerson, D. Z. Gerhart, and L. R. Drewes. Expression of large amino acid transporter LAT1 in rat brain endothelium. J. Cereb. Blood Flow Metab. 20(11):1557–1562 (2000), Nov.

    PubMed  CAS  Google Scholar 

  58. Q. R. Smith. Carrier-mediated transport to enhance drug delivery to brain. International Congress Series. 1277:63–74 (2005).

    CAS  Google Scholar 

  59. K. C. Cundy, R. Branch, T. Chernov-Rogan, et al. XP13512 [(+/-)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J. Pharmacol. Exp. Ther. 311(1):315–323 (2004), Oct.

    PubMed  CAS  Google Scholar 

  60. G. J. Goldenberg, H. Y. Lam, A. Begleiter. Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cells in vitro. J. Biol. Chem. 254(4):1057–1064 (1979), Feb 25.

    PubMed  CAS  Google Scholar 

  61. C. Fernandez, O. Nieto, J. A. Fontenla, E. Rivas, M. L. de Ceballos, A. Fernandez-Mayoralas. Synthesis of glycosyl derivatives as dopamine prodrugs: interaction with glucose carrier GLUT-1. Org. Biomol. Chem. 1(5):767–771 (2003), Mar 7.

    PubMed  CAS  Google Scholar 

  62. P. Gomes, P. Soares-da-Silva. L-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE 4. Brain Res. 829(1–2):143–150 (1999), May 22.

    PubMed  CAS  Google Scholar 

  63. W. Dairman, J. G. Christenson, S. Udenfriend. Decrease in liver aromatic L-amino-acid decarboxylase produced by chronic administration of L-dopa. Proc. Natl. Acad. Sci. U S A. 68(9):2117–2120 (1971), Sep.

    PubMed  CAS  Google Scholar 

  64. I. Mena, G. C. Cotzias. Protein intake and treatment of Parkinson’s disease with levodopa. N. Engl. J. Med. 292(4):181–184 (1975), Jan 23.

    Article  PubMed  CAS  Google Scholar 

  65. M. Hokari, H. Q. Wu, R. Schwarcz, Q. R. Smith. Facilitated brain uptake of 4-chlorokynurenine and conversion to 7-chlorokynurenic acid. Neuroreport. 8(1):15–18 (1996), Dec 20.

    PubMed  CAS  Google Scholar 

  66. D. M. Killian, S. Hermeling, P. J. Chikhale. Targeting the cerebrovascular large neutral amino acid transporter (LAT1) isoform using a novel disulfide-based brain drug delivery system. Drug Deliv. 14(1):25–31 (2007), Jan.

    PubMed  CAS  Google Scholar 

  67. Q. R. Smith, and A. J. L. Cooper. Mammalian amino acid transport. Plenum Press, New York, 1992, pp. 165–193.

    Google Scholar 

  68. I. Walker, D. Nicholls, W. J. Irwin, and S. Freeman. Drug delivery via active transport at the blood–brain barrier: affinity of a prodrug of phosphonoformate for the large amino acid transporter. Int. J. Pharm. 104(2):157 (1994).

    CAS  Google Scholar 

  69. A. Balakrishnan, B. Jain-Vakkalagadda, C. Yang, D. Pal, and A. K. Mitra. Carrier mediated uptake of -tyrosine and its competitive inhibition by model tyrosine linked compounds in a rabbit corneal cell line (SIRC)—strategy for the design of transporter/receptor targeted prodrugs. Int. J. Pharm. 247(1–2):115 (2002).

    PubMed  CAS  Google Scholar 

  70. C. L. Farrell, and W. M. Pardridge. Blood–brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc. Natl. Acad. Sci. U. S. A. 88(13):5779–5783 (1991), Jul 1.

    PubMed  CAS  Google Scholar 

  71. G. Battaglia, M. La Russa, V. Bruno, et al. Systemically administered D-glucose conjugates of 7-chlorokynurenic acid are centrally available and exert anticonvulsant activity in rodents. Brain Res. 860(1–2):149–156 (2000), Mar 31.

    PubMed  CAS  Google Scholar 

  72. T. Halmos, M. Santarromana, K. Antonakis, and D. Scherman. Synthesis of glucose–chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur. J. Pharmacol. 318(2–3):477–484 (1996), Dec 30.

    PubMed  CAS  Google Scholar 

  73. C. Fernandez, O. Nieto, E. Rivas, G. Montenegro, J. A. Fontenla, and A. Fernandez-Mayoralas. Synthesis and biological studies of glycosyl dopamine derivatives as potential antiparkinsonian agents. Carbohydr. Res. 327(4):353–365 (2000), Aug 7.

    PubMed  CAS  Google Scholar 

  74. F. Bonina, C. Puglia, M. G. Rimoli, et al. Glycosyl derivatives of dopamine and L-dopa as anti-Parkinson prodrugs: synthesis, pharmacological activity and in vitro stability studies. J. Drug Target. 11(1):25–36 (2003), Jan.

    PubMed  CAS  Google Scholar 

  75. S. Ohtsuki, and T. Terasaki. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm. Res. 24(9):1745–1758 (2007), Sep.

    PubMed  CAS  Google Scholar 

  76. G. Lee, S. Dallas, M. Hong, and R. Bendayan. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol. Rev. 53(4):569–596 (2001), Dec.

    PubMed  CAS  Google Scholar 

  77. A. Tsuji, and I. I. Tamai. Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv. Drug. Deliv. Rev. 36(2–3):277–290 (1999), Apr 5.

    PubMed  CAS  Google Scholar 

  78. T. Ooie, T. Terasaki, H. Suzuki, and Y. Sugiyama. Kinetic evidence for active efflux transport across the blood–brain barrier of quinolone antibiotics. J. Pharmacol. Exp. Ther. 283(1):293–304 (1997), Oct.

    PubMed  CAS  Google Scholar 

  79. W. Loscher, and H. Potschka. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 76(1):22–76 (2005), May.

    PubMed  Google Scholar 

  80. K. P. Moore, H. Zhu, H. A. Rajapakse, et al. Strategies toward improving the brain penetration of macrocyclic tertiary carbinamine BACE-1 inhibitors. Bioorg. Med. Chem. Lett. 17(21):5831–5835 (2007), Nov 1.

    PubMed  CAS  Google Scholar 

  81. S. R. Stauffer, M. G. Stanton, A. R. Gregro, et al. Discovery and SAR of isonicotinamide BACE-1 inhibitors that bind beta-secretase in a N-terminal 10s-loop down conformation. Bioorg. Med. Chem. Lett. 17(6):1788–1792 (2007), Mar 15.

    PubMed  CAS  Google Scholar 

  82. J. W. Polli, J. L. Jarrett, S. D. Studenberg, et al. Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm. Res. 16(8):1206–1212 (1999), Aug.

    PubMed  CAS  Google Scholar 

  83. P. Breedveld, J. H. Beijnen, and J. H. Schellens. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol. Sci. 27(1):17–24 (2006), Jan.

    PubMed  CAS  Google Scholar 

  84. Y. Deguchi, H. Hayashi, S. Fujii, et al. Improved brain delivery of a nonsteroidal anti-inflammatory drug with a synthetic glyceride ester: a preliminary attempt at a CNS drug delivery system for the therapy of Alzheimer’s disease. Eur J Pharm Sci 8:371–378 (2000).

    CAS  Google Scholar 

  85. P. K. Kiptoo, M. O. Hamad, P. A. Crooks, and A. L. Stinchcomb. Enhancement of transdermal delivery of 6-beta-naltrexol via a codrug linked to hydroxybupropion. J. Control. Release. 113(2):137–145 (2006), Jun 28.

    PubMed  CAS  Google Scholar 

  86. J. Leppanen, J. Huuskonen, T. Nevalainen, J. Gynther, H. Taipale, and T. Jarvinen. Design and synthesis of a novel L-dopa-entacapone codrug. J. Med. Chem. 45(6):1379–1382 (2002), Mar 14.

    PubMed  Google Scholar 

  87. E. M. Taylor. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin. Pharmacokinet. 41(2):81–92 (2002).

    PubMed  CAS  Google Scholar 

  88. U. Bickel, T. Yoshikawa, and W. M. Pardridge. Delivery of peptides and proteins through the blood–brain barrier. Adv. Drug. Deliv. Rev. 46(1–3):247–279 (2001), Mar 1.

    PubMed  CAS  Google Scholar 

  89. W. M. Pardridge. Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 36(2–3):299–321 (1999), Apr 5.

    PubMed  CAS  Google Scholar 

  90. Y. Saito, J. Buciak, J. Yang, and W. M. Pardridge. Vector-mediated delivery of 125I-labeled beta-amyloid peptide A beta 1–40 through the blood–brain barrier and binding to Alzheimer disease amyloid of the A beta 1–40/vector complex. Proc. Natl. Acad. Sci. U S A. 92(22):10227–10231 (1995), Oct 24.

    PubMed  CAS  Google Scholar 

  91. U. Bickel, T. Yoshikawa, E. M. Landaw, K. F. Faull, and W. M. Pardridge. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc. Natl. Acad. Sci. U S A. 90(7):2618–2622 (1993), Apr 1.

    PubMed  CAS  Google Scholar 

  92. O. Greco, and G. U. Dachs. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J. Cell. Physiol. 187(1):22–36 (2001), Apr.

    PubMed  CAS  Google Scholar 

  93. G. U. Dachs, J. Tupper, and G. M. Tozer. From bench to bedside for gene-directed enzyme prodrug therapy of cancer. Anticancer Drugs. 16(4):349–359 (2005), Apr.

    PubMed  CAS  Google Scholar 

  94. M. Aghi, F. Hochberg, and X. O. Breakefield. Prodrug activation enzymes in cancer gene therapy. J Gene Med. 2(3):148–164 (2000), May–Jun.

    PubMed  CAS  Google Scholar 

  95. W. A. Denny. Tumor-activated prodrugs—a new approach to cancer therapy. Cancer Invest. 22(4):604–619 (2004).

    PubMed  CAS  Google Scholar 

  96. K. J. Pulkkanen, and S. Yla-Herttuala. Gene therapy for malignant glioma: current clinical status. Mol. Ther. 12(4):585–598 (2005), Oct.

    PubMed  CAS  Google Scholar 

  97. Z. H. Wang, S. Samuels, M. A. Gama Sosa, and E. H. Kolodny. 5-Fluorocytosine-mediated apoptosis and DNA damage in glioma cells engineered to express cytosine deaminase and their enhancement with interferon. J Neurooncol. 36(3):219–229 (1998), Feb.

    PubMed  CAS  Google Scholar 

  98. N. G. Rainov. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene. Ther. 11(17):2389–2401 (2000), Nov 20.

    PubMed  CAS  Google Scholar 

  99. N. G. Rainov, and H. Ren. Clinical trials with retrovirus mediated gene therapy–what have we learned?. J. Neurooncol. 65(3):227–236 (2003), Dec.

    PubMed  Google Scholar 

  100. A. Immonen, M. Vapalahti, K. Tyynela, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol. Ther. 10(5):967–972 (2004), Nov.

    PubMed  CAS  Google Scholar 

  101. A. M. Sandmair, S. Loimas, P. Puranen, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum. Gene. Ther. 11(16):2197–2205 (2000), Nov 1.

    PubMed  CAS  Google Scholar 

  102. P. Ettmayer, G. L. Amidon, B. Clement, and B. Testa. Lessons learned from marketed and investigational prodrugs. J Med Chem. 47(10):2393–2404 (2004), May 6.

    PubMed  CAS  Google Scholar 

  103. V. J. Stella. A Case for Prodrugs. In: Stella VJ, Borchardt R, Hageman M, Oliyai R, Maag H, Tilley J, eds. Prodrugs: Challenges and Rewards. Part 1. AAPS Press/Springer, New York, 2007, pp. 3–33.

    Google Scholar 

  104. M. Gynther, K. Laine, J. Ropponen, et al. Large neutral amino acid transporter enables brain drug delivery via prodrug. J. Med. Chem. (2008), In press.

Download references

Acknowledgements

Authors thank Dr. Jace Callaway for his valuable comments and the Academy of Finland (KL,108569) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Rautio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautio, J., Laine, K., Gynther, M. et al. Prodrug Approaches for CNS Delivery. AAPS J 10, 92–102 (2008). https://doi.org/10.1208/s12248-008-9009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9009-8

Key words

Navigation