AAPS PharmSciTech

, Volume 6, Issue 2, pp E329–E357 | Cite as

Cyclodextrins in drug delivery: An updated review

  • Rajeswari Challa
  • Alka Ahuja
  • Javed Ali
  • R. K. Khar


The purpose of this review is to discuss and summarize some of the interesting findings and applications of cyclodextrins (CDs) and their derivatives in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important CD applications in the design of various novel delivery systems like liposomes, microspheres, microcapsules, and nanoparticles. In addition to their well-known effects on drug solubility and dissolution, bioavailability, safety, and stability, their use as excipients in drug formulation are also discussed in this article. The article also focuses on various factors influencing inclusion complex formation because an understanding of the same is necessary for proper handling of these versatile materials. Some important considerations in selecting CDs in drug formulation such as their commercial availability, regulatory status, and patent status are also summarized. CDs, because of their continuing ability to find several novel applications in drug delivery, are expected to solve many problems associated with the delivery of different novel drugs through different delivery routes.


cyclodextrins drug formulation drug delivery novel delivery systems excipients 


  1. 1.
    Loftsson T, Brewester M. Pharmaceutical applications of cyclodextrins. I. Drug solubilization and stabilization.J Pharm Sci. 1996;85:1017–1025.CrossRefGoogle Scholar
  2. 2.
    Endo T, Nagase H, Ueda H, Kobayashi S, Nagai T. Isolation, purification, and characterization of Cyclomaltodecaose (curly epsilon-Cyclodextrin), Cyclomaltoundecaose (zeta-Cyclodextrin) and Cyclomaltotridecaose (é-Cyclodextrin).Chem Pharm Bull (Tokyo.) 1997;45:532–536.Google Scholar
  3. 3.
    Endo T, Nagase H, Ueda H, Shigihara A, Kobayashi S, Nagai T. Isolation, purification and characterization of Cyclomaltooctadecaose (v-Cyclodextrin), Cyclomaltononadecaose (xi-Cyclodextrin), Cyclomaltoeicosaose (o-Cyclodextrin) and Cyclomaltoheneicosaose (ã-Cyclodextrin.Chem Pharm Bull (Tokyo). 1998;46:1840–1843.Google Scholar
  4. 4.
    Miyazawa H, Ueda H, Nagase T, Endo T, Kobayashi S, Nagai T. Physicochemical properties and inclusion complex formation of δ-cyclodextrin.Eur J Pharm Sci. 1995;3:153–162.CrossRefGoogle Scholar
  5. 5.
    Szejtli J. Cylodextrin in drug formulations: Part I.Pharm Technol Int. 1991;3:15–23.Google Scholar
  6. 6.
    Szente L, Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development.Adv Drug Deliv Rev. 1999;36:17–38.CrossRefGoogle Scholar
  7. 7.
    Matsuda H, Arima H. Cyclodextrins in transdermal and rectal delivery.Adv Drug Deliv Rev. 1999;36:81–99.CrossRefGoogle Scholar
  8. 8.
    Higuchi T, Connors KA. Phase-solubility techniques.Adva Anal Chem Instr. 1965;4:212–217.Google Scholar
  9. 9.
    Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2.In vivo drug delivery.J Pharm Sci. 1996;85:1142–1168.CrossRefGoogle Scholar
  10. 10.
    Hersey A, Robinson BH, Kelly HC. Mechanism of inclusion compound formation for binding of organic dyes, ions and surfactants to alpha cyclodextrin studied by kinetic methods based on competition experiments.J Chem Soc, Faraday Trans 1. 1986;82:1271–1287.CrossRefGoogle Scholar
  11. 11.
    Cramer F, Saenger W, Satz HC. Inclusion compounds. XIX. The formation of inclusion compounds of alpha cyclodextrin in aqueous solutions, thermodynamics and kinetics.J Am Chem Soc. 1967;89:14–20.CrossRefGoogle Scholar
  12. 12.
    Uekama K, Otagiri M. Cyclodextrins in drug carrier systems.Crit Rev Ther Drug Carrier Sys. 1987;3:1–40.Google Scholar
  13. 13.
    Szejtli J. Medicinal applications of cyclodextrins.Med Res Rev. 1994;14:353–386.CrossRefGoogle Scholar
  14. 14.
    Thomson DO. Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals.Crit Rev Ther Drug Carr Sys. 1997;14:1–104.Google Scholar
  15. 15.
    Jayachandra Babu R, Pandit JK. Cyclodextrin inclusion complexes: oral applications.Eastern Pharmacist. 1995;38:37–42.Google Scholar
  16. 16.
    Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation.J Pharm Sci. 1997;86:147–162.CrossRefGoogle Scholar
  17. 17.
    Stella VJ, Rajeswski RA. Cyclodextrins: their future in drug formulation and delivery.Pharm Res. 1997;14:556–567.CrossRefGoogle Scholar
  18. 18.
    Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems.Chem Rev. 1998;98:2045–2076.CrossRefGoogle Scholar
  19. 19.
    Loftsson T, Ólafsson JH. Cyclodextrins: new drug delivery system in dermatology.Int J Dermatol. 1998;37:241–246.CrossRefGoogle Scholar
  20. 20.
    Loftsson T. Increasing the cyclodextrin complexation of drugs and drug bioavailability through addition of water-soluble polymers.Pharmazie. 1998;53:733–740.Google Scholar
  21. 21.
    Castillo JA, Canales JP, Garcia JJ, Lastres JL, Bolas F, Torrado JJ. Preparation and characterization of albendazole beta-cyclodextrin complexes.Drug Dev Ind Pharm. 1999;25:1241–1248.CrossRefGoogle Scholar
  22. 22.
    Diaz D, Escobar Llanos CM, Bernad MJB. Study of the binding in an aqueous medium of inclusion complexes of several cyclodextrins involving fenoprofen calcium.Drug Dev Ind Pharm. 1999;25:107–110.CrossRefGoogle Scholar
  23. 23.
    Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems.Int J Pharm. 1999;179:117–128.CrossRefGoogle Scholar
  24. 24.
    Nesna N, Lou J, Breslow R. The binding of cocaine to cyclodextrins.Bioorg Med Chem Lett. 2000;10:1931–1933.CrossRefGoogle Scholar
  25. 25.
    Arias-Blanco MJA, Moyano JR, Martinez JIP, Gines JM. Study of inlusion complex of gliclazide in, α-cyclodextrin.J Pharm Biomed Anal. 1998;18:275–279.CrossRefGoogle Scholar
  26. 26.
    Ueda H, Wakamiya T, Endo H, Nagase H, Tomono K, Nagai T. Interaction of cyclomaltononaose (delta-CD) with several drugs.Drug Dev Ind Pharm. 1999;25:951–954.CrossRefGoogle Scholar
  27. 27.
    Akasaka H, Endo T, Nagase H, Ueda H, Kobayashi S. Complex formation of cyclomaltononaose delta-cyclodextrin (delta-CD) with macrocyclic compounds.Chem Pharm Bull (Tokyo). 2000;48:1986–1989.Google Scholar
  28. 28.
    Mura P, Adragna E, Rabasco AM, et al. Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems.Drug Dev Ind Pharm. 1999;25:279–287.CrossRefGoogle Scholar
  29. 29.
    Lutka A. Investigation of interaction of promethazine with cyclodextrins in aqueous solution.Acta Pol Pharm. 2002;59:45–51.Google Scholar
  30. 30.
    Nagase Y, Hirata M, Wada K, et al. Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether beta-cyclodextrin.Int J Pharm. 2001;229:163–172.CrossRefGoogle Scholar
  31. 31.
    Jain AC, Adeyeye MC. Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes.Int J Pharm. 2001;212:177–186.CrossRefGoogle Scholar
  32. 32.
    Loftsson T, Peterson DS. Cyclodextrin solubilization of ETH-615, a zwitterionic drug.Drug Dev Ind Pharm. 1998;24:365–370.Google Scholar
  33. 33.
    Dalmora MEA, Oliveira AG. Inclusion complex of piroxicam with beta-cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion.Int J Pharm. 1999;184:157–164.CrossRefGoogle Scholar
  34. 34.
    McCandless R, Yalkowsky SH. Effect of hydroxypropyl-beta-cyclodextrin and pH on the solubility of levemopamil HCl.J Pharm Sci. 1998;87:1639–1642.CrossRefGoogle Scholar
  35. 35.
    Kim Y, Oksanen DA, Massefski W, Blake JF, Duffy EM, Chrunyk B. Inclusion complexation of ziprasidone mesylate with beta-cyclodextrin sulfobutyl ether.J Pharm Sci. 1998;87:1560–1567.CrossRefGoogle Scholar
  36. 36.
    Tros de Ilarduya MC, Martin C, Goni MM, Martinez-Oharriz MC. Solubilization and interaction of sulindac with beta-cyclodextrin in the solid state and in aqueous solution.Drug Dev Ind Pharm. 1998;24:301–306.Google Scholar
  37. 37.
    Diaz D, Bernad MJB, Mora JG, Llaons CME. Solubility, 1H-NMR, and molecular mechanics of mebendazole with different cyclodextrins.Drug Dev Ind Pharm. 1999;25:111–115.CrossRefGoogle Scholar
  38. 38.
    Zarzycki PK, Lamparczyk H. The equilibrium constant of β-cyclodextrin-phenolphtalein complex; influence of temperature and tetrahydrofuran addition.J Pharm Biomed Anal. 1998;18:165–179.CrossRefGoogle Scholar
  39. 39.
    Jain AC, Adeyeye MC. Hygroscopicity, phase solubility and dissolution of various substituted sulfobutylether beta-cyclodextrins (SBE) and danazol-SBE inclusion complexes.Int J Pharm. 2001;212:177–186.CrossRefGoogle Scholar
  40. 40.
    Chowdary KPR, Nalluri BN. Nimesulide and beta-cyclodextrin inclusion complexes: physicochemical characterization and dissolution rate studies.Drug Dev Ind Pharm. 2000; 26:1217–1220.CrossRefGoogle Scholar
  41. 41.
    Palmeiri GF, Angeli DG, Giovannucci G, Martelli S. Inclusion of methoxytropate in β- and hydroxylpropyl β-cyclodextrins: Comparision of preparation methods.Drug Dev Ind Pharm. 1997; 23:27–37.Google Scholar
  42. 42.
    Palmieri GF, Wehrle P, Stamm A. Inclusion of vitamin D2 in β-cyclodextrin: evaluation of different complexation methods.Drug Dev Ind Pharm. 1993;19:875–885.CrossRefGoogle Scholar
  43. 43.
    Moyano JR, Arias MJ, Gines JM, Perez JI, Rabasco AM. Dissolution behavior of oxazepam in the presence of cyclodextrins: evaluation of oxazepam dimeb binary system.Drug Dev Ind Pharm. 1997;23:379–385.Google Scholar
  44. 44.
    Pose-Vilarnovo B, Perdomo-Lopez I, Echezarrela-Lopez M, Schroth-Pardo P, Estrada E, Torres-Labandeira JJ. Improvement of water solubility of sulfamethizole through its complexation with β- and hydroxypropyl-β-cyclodextrin—Characterization of the interaction in solution and in solid state.Eur J Pharm Sci. 2001;13:325–331.CrossRefGoogle Scholar
  45. 45.
    Mitrevej A, Sinchaipanid N, Junyaprasert V, Warintornuwat L. Effect of grinding of β-cyclodextrin and glibenclamide on tablet properties.Drug Dev Ind Pharm. 1996;22:1237–1241.CrossRefGoogle Scholar
  46. 46.
    Senoferjan AM, Nanjundaswamy NG, Mahesh S, Murthy SN. Formulation and evaluation of β- cyclodextrin complexes of tenoxicam.Indian J Pharm Sci. 2000;62:119–121.Google Scholar
  47. 47.
    Loftsson T, Guomundsdottir TK, Frioriksdottir H. The influence of water-soluble polymers and pH on hydroxypropyl-α-cyclodextrin complexation of drugs.Drug Dev Ind Pharm. 1996;22:401–406.Google Scholar
  48. 48.
    Nath BS, Shivkumar HN. A 2(3) Factorial studies on factors influencing Meloxicam β-cyclodextrin complexation for better solubility.Indian J Pharm Sci. 2000; 62:129–132.Google Scholar
  49. 49.
    Cappello B, Carmignani C, Iervolino M, La Rotonda MI, Saettone MF. Solubilization of tropicamide by hydroxypropyl-beta-cyclodextrin and water-soluble polymers: in vitro/ in vivo studies.Int J Pharm. 2001;213:75–81.CrossRefGoogle Scholar
  50. 50.
    Faucci MT, Mura P. Effect of water-soluble polymers on naproxen complexation with natural and chemically modified beta-cyclodextrins.Drug Dev Ind Pharm. 2001;27:909–917.Google Scholar
  51. 51.
    Granero G, de Bertorello NM, Longhi M. Solubilization of a naphthoquinone derivative by hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and polyvinylpyroolidone (PVP-K30). The influence of PVP-K30 and pH on solubilizing effect of HP-beta-CD.Boll Chim Farm. 2002;141:63–66.Google Scholar
  52. 52.
    Pedersen M. Effect of hydrotropic substances on the complexation of clotrimazole with beta cyclodextrin.Drug Dev Ind Pharm. 1993; 19:439–448.CrossRefGoogle Scholar
  53. 53.
    Veiga F, Fernandes C, Maincent P. Influence of the preparation method on the physicochemical properties of tolbutamide/cyclodextrin binary systems.Drug Dev Ind Pharm. 2001;27:523–532.CrossRefGoogle Scholar
  54. 54.
    Tokumura T, Nanda M, Tsushima Y, et al. Enhancement of bioavailability of cinnarizine from its beta-cyclodextrin complex on oral administration with DL-phenylalanine as a competing agent.J Pharm Sci. 1986;75:391–394.CrossRefGoogle Scholar
  55. 55.
    Muller BW, Albers E. Effect of hydrotropic substances on the complexation of sparingly soluble drugs with cyclodextrin derivatives and the influence of cyclodextrin complexation on the pharmacokinetics of the drugs.J Pharm Sci. 1991;80:599–604.CrossRefGoogle Scholar
  56. 56.
    Redenti E, Szente L, Szetli J. Drug/cyclodextrin/hydroxy acid multicomponent systems. Properties and pharmaceutical applications.J Pharm Sci. 2000; 89:1–8.CrossRefGoogle Scholar
  57. 57.
    Li P, Zhao L, Yalkowsky SH. Combined effect of cosolvent and cyclodextrin on solubilization of nonpolar drugs.J Pharm Sci. 1999;88:1107–1111.CrossRefGoogle Scholar
  58. 58.
    Miyake K, Irie T, Arima H, et al. Characterization of itraconazole/ 2-hydroxypropyl-beta-cyclodextrin inclusion complex in aqueous propylene glycol solution.Int J Pharm. 1999;179:237–245.CrossRefGoogle Scholar
  59. 59.
    Blanchard J, Stefan P. Some important considerations in the use of cyclodextrins.Pharm Res. 1999;16:1796–1798.CrossRefGoogle Scholar
  60. 60.
    Muller BW, Brauns U. Hydroxypropyl-beta-cyclodextrin derivatives: influence of average degree of substitution on complexing ability and surface activity.J Pharm Sci. 1986;75:571–572.CrossRefGoogle Scholar
  61. 61.
    Zia V, Rajeswski RA, Bornancini ER, Luna EA, Stella VJ. Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether beta-cyclodextrins with steroids.J Pharm Sci. 1997;86:220–224.CrossRefGoogle Scholar
  62. 62.
    CycloLab Cyclodextrin Research & Development Laboratory Web site. Available at: http://www.cyclolab.hu. Accessed May 25, 2005.Google Scholar
  63. 63.
    Wacker-Chemie GmbH Products and Trademarks Web site. Available at: http://www.wacker.com. Accessed May 25, 2005.Google Scholar
  64. 64.
    Sigma-Aldich Web site. Available at: http://www.sigmaaldrich.com/. Accessed May 25, 2005.Google Scholar
  65. 65.
    CyDex Inc Web site. Available at: http://www.cydexinc.com. Accessed May 25, 2005.Google Scholar
  66. 66.
    Inc CTC. Web site. Available at: http://www.cyclodex.com. Accessed May 25, 2005.Google Scholar
  67. 67.
    Cyclodextrins for Pharmaceutical Applications [technical brochure]. 2000. Wayne, NJ: International Specialty Products. Available at: http:// www.ispcorp.com/products/pharma/content/forwhatsnew/cyclodex/ cyclodex.pdf. Accessed May 25, 2005.Google Scholar
  68. 68.
    Mosher G, Thompson DO. Complexation and Cyclodextrins. In: Swarbrick J, Boylan JC, eds.Encyclopedia of Pharmaceutical Technology. 2nd ed. New York, NY: Marcell Dekker; 2002:531–558.Google Scholar
  69. 69.
    Pitha J.Pharmaceutical preparations containing cyclodextrin derivatives. US patent 4 727 064. February 23, 1988.Google Scholar
  70. 70.
    Tasic LM, Jovanovic MD, Djuric ZR. The influence of beta-cyclodextrin on the solubility and dissolution rate of paracetamol solid dispersions.J Pharm Pharmacol. 1992;44:52–55.Google Scholar
  71. 71.
    Sanghavi NM, Choudhari KB, Matharu RS, Viswanathan L. Inclusion complexation of Lorazepam with beta-cyclodextrin.Drug Dev Ind Pharm. 1993;19:701–712.CrossRefGoogle Scholar
  72. 72.
    Ahn HJ, Kim KM, Choi SJ, Kim CK. Effects of cyclodextrin derivatives on bioavailability of ketoprofen.Drug Dev Ind Pharm. 1997; 23:397–401.CrossRefGoogle Scholar
  73. 73.
    Dhanaraju MD, Santil Kumaran K, Baskaran T, Moorthy MSR. Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin.Drug Dev Ind Pharm. 1998; 24:583–587.CrossRefGoogle Scholar
  74. 74.
    Veiga MD, Diaz PJ, Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems.J Pharm Sci. 1998;87:891–900.CrossRefGoogle Scholar
  75. 75.
    Becket G, Schep LJ, Tan MY. Improvement of thein vitro dissolution of praziquantal by complexation with alpha-, beta- and gamma-cyclodextrins.Int J Pharm. 1999; 179:65–71.CrossRefGoogle Scholar
  76. 76.
    Lotter J, Krieg HM, Keizer K, Breytenbach JC. The influence of beta-cyclodextrin on the solubility of chlorthalidone and its enantiomers.Drug Dev Ind Pharm. 1999; 25:879–884.CrossRefGoogle Scholar
  77. 77.
    Askrabic JM, Rajic DS, Tasic L, Djuric S, Kasa P, Hodi KP. Etodolac and solid dispersion with β-cyclodextrins.Drug Dev Ind Pharm. 1997;23:1123–1129.CrossRefGoogle Scholar
  78. 78.
    Cavallari C, Abertini B, Rodriguez MLG, Rodriguez L. Improved dissolution behavior of steam granulated piroxicam.Eur J Pharm Biopharm. 2002;54:65–73.CrossRefGoogle Scholar
  79. 79.
    Chowdary KPR, Rao SS. Investigation of dissolution enhancement of itraconazole by complexation with β-, and hydroxypropyl-β-cyclodextrins.Indian J Pharm Sci. 2001;63:438–441.Google Scholar
  80. 80.
    Ghorab MK, Adeyeye MC. Enhancement of ibuprofen dissolution via wet granulation with beta cyclodextrin.Pharm Dev Technol. 2001;6:305–314.CrossRefGoogle Scholar
  81. 81.
    Arias MJ, Moyano JR, Munoz P, Gines JM, Justo A, Giordano F. Study of omeprazole-gamma-cyclodextrin complexation in the solid state.Drug Dev Ind Pharm. 2000;26:253–259.CrossRefGoogle Scholar
  82. 82.
    Uekama K, Fujinaga T, Hirayama F, et al. Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation.J Pharm Sci. 1983;72:1338–1341.CrossRefGoogle Scholar
  83. 83.
    Londhe V, Nagarsenker M. Comparision between Hydroxypropyl-β-cyclodextrin and polyvinyl pyrrolidine as carriers for carbamazepine solid dispersions.Indian J Pharm Sci. 1999;61:237–240.Google Scholar
  84. 84.
    Trapani G, Latrofa A, Franco M, et al. Complexation of zolpidem with 2-hydroxypropyl-β-, methyl-β-, 2-hydroxypropyl-γ-cyclodextrins: Effect on aqueous solubility, dissolution rate and ataxic activity in rats.J Pharm Sci. 2000;89:1443–1451.CrossRefGoogle Scholar
  85. 85.
    Latrofa A, Trapani G, Franco M, et al. Complexation of phenytoin with some hydrophilic cyclodextrins: Effect on aqueous solubility, dissolution rate and anti-covulsant activity in mice.Eur J Pharm Biopharm. 2001;52:65–73.CrossRefGoogle Scholar
  86. 86.
    Miyake K, Arima H, Hiramaya F, et al. Improvement of solubility and oral bioavailability of rutin by complexation with 2-hydroxypropyl-beta-cyclodextrin.Pharm Dev Technol. 2000;5:399–407.CrossRefGoogle Scholar
  87. 87.
    Bettinetti G, Gazzaniga A, Mura P, Giordano F, Setti M. Thermal behavior and dissolution properties of naproxen in combinations with chemically modified beta-cyclodextrins.Drug Dev Ind Pharm. 1992;18:39–53.CrossRefGoogle Scholar
  88. 88.
    Kang J, Kumar V, Yang D, Chowdhury PR, Hohl RJ. Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent.Eur J Pharm Sci. 2002;15:163–170.CrossRefGoogle Scholar
  89. 89.
    Zhao L, Li P, Yalkowsky SH. Solubilization of fluasterone.J Pharm Sci. 1999;88:967–969.CrossRefGoogle Scholar
  90. 90.
    Kaukonen AM, Lennernas H, Mannermaa JP. Water-soluble Beta cyclodextrin in paediatric oral solutions of spiranolactone: preclinical evaluation of spiranolactone bioavailability from solutions of beta cyclodextrin derivatives in rats.J Pharm Pharmacol. 1998;50:611–619.Google Scholar
  91. 91.
    Arima H, Yunomae K, Miyake K, Irie T, Hirayama F, Uekama K. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats.J Pharm Sci. 2001;90:690–701.CrossRefGoogle Scholar
  92. 92.
    Bettinetti G, Mura P, Faucci MT, Sorrenti M, Setti M. Interaction of naproxen with noncrystalline acetyl beta- and acetyl gamma-cyclodextrins in the solid and liquid state.Eur J Pharm Sci. 2002;15:21–29.CrossRefGoogle Scholar
  93. 93.
    Ueda H, Ou D, Endo T, Nagase H, Tomono K, Nagai T. Evaluation of a sulfobutyl ether beta-cyclodextrin as a solubilizing/stabilizing agent for several drugs.Drug Dev Ind Pharm. 1998;24:863–867.Google Scholar
  94. 94.
    Sangalli ME, Zema L, Moroni A, Foppoli A, Giordano F, Gazzania A. Influence of β-cylodextrin on the release of poorly soluble drugs from inert and hydrophilic heterogeneous polymeric matrices.Biomaterials. 2001;22:2647–2651.CrossRefGoogle Scholar
  95. 95.
    Pina ME, Veiga F. The influence of diluent on the release of theophylline from hydrophilic matrix tablets.Drug Dev Ind Pharm. 2000;26:1125–1128.CrossRefGoogle Scholar
  96. 96.
    Loftsson T, Stefánsson E. Effect of cyclodextrins on topical drug delivery to the eye.Drug Dev Ind Pharm. 1997;23:473–481.Google Scholar
  97. 97.
    Van Dorne H. Interaction between cyclodextrins and ophthalmic drugs.Eur J Pharm Biopharm. 1993;39:133–139.Google Scholar
  98. 98.
    Loftsson T, Másson M, Stefánsson E. Cyclodextrins as permeation enhancers. 17th Pharmaceutical Technology Conference and Exhibition: March 24–26, 1997; Dublin, Ireland.Google Scholar
  99. 99.
    Loftsson T, Leeves N, Bjomsdottir B, Duffy L, Masson M. Effect of cyclodextrins and polymers on triclosan availability and substantivity in toothpastesin vivo.J Pharm Sci. 1999;88:1254–1258.CrossRefGoogle Scholar
  100. 100.
    Willems L, Geest RV, de Beule K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics.J Clin Pharm Ther. 2001;26:159–169.CrossRefGoogle Scholar
  101. 101.
    Yang T, Hussain A, Paulson J, Abbruscato TJ, Ahsan F. Cyclodextrins in nasal delivery of low-molecular-weight heparins:in vivo andin vitro studies.Pharm Res. 2004;21:1127–1136.CrossRefGoogle Scholar
  102. 102.
    Watanabe Y, Kiriyama M, Ito R, et al. Pharmacodynamics and pharmacokinetics of recombinant human granulocyte colony-stimulating factor (rhG-CSF) after administration of a rectal dosage vehicle.Biol Pharm Bull. 1996;19:1059–1063.Google Scholar
  103. 103.
    Nicolazzi C, Venard V, Le Faou A, Finance C.In vitro antiviral activity of the gancyclovir complexed with beta cyclodextrin on human cytomegalovirus strains.Antiviral Res. 2002;54:121–127.CrossRefGoogle Scholar
  104. 104.
    Blanchard J, Ugwu SO, Bhardwaj R, Dorr RT. Development and testing of an improved of phenytoin using 2-hydroxypropyl-beta-cyclodextrin.Pharm Dev Technol. 2000;5:333–338.CrossRefGoogle Scholar
  105. 105.
    Scalia S, Villani S, Casolari A. Inclusion complexation of the sunscreening agent 2-ethyl hexyl-p-dimethyl aminobenzoate with hydroxypropyl-β-cyclodextrin: effect on photostability.J Pharm Pharmacol. 1999;51:1367–1374.CrossRefGoogle Scholar
  106. 106.
    Serni U. Rheumatic diseases—clinical experience with piroxicam-beta-cyclodextrin.Eur J Rheumatol Inflamm. 1993;12:47–54.Google Scholar
  107. 107.
    Kim JH, Lee SK, Ki MH, et al. Development of parenteral formulation for a novel angiogenesis inhibitor, CKD-732 through complexation with hydroxypropyl-β-cyclodextrin.Int J Pharm. 2004;272:79–89.CrossRefGoogle Scholar
  108. 108.
    Nagase Y, Arima H, Wada K, et al. Inhibitory effect of sulfobutyl ether beta-cyclodextrin on DY-9760e-induced cellular damage:In vitro andin vivo studies.J Pharm Sci. 2003;92:2466–2474.CrossRefGoogle Scholar
  109. 109.
    Loftssona T, Jarvinen T. Cyclodextrins in ophthalmic drug delivery.Adv Drug Deliv Rev. 1999;36:59–79.CrossRefGoogle Scholar
  110. 110.
    Babu R, Pandit JK. Effect of aging on the dissolution stability of glibenclamide/beta-cyclodextrin complex.Drug Dev Ind Pharm. 1999;25:1215–1219.CrossRefGoogle Scholar
  111. 111.
    Cwiertnia B, Hladon T, Stobiecki M. Stability of Diclofenac sodium in the inclusion complex in the beta cyclodextrin in the solid state.J Pharm Pharmacol. 1999;51:1213–1218.CrossRefGoogle Scholar
  112. 112.
    Li J, Guo Y, Zografi G. The solid-state stability of amorphous quinapril in the presence of beta-cyclodextrins.J Pharm Sci. 2002;91:229–243.CrossRefGoogle Scholar
  113. 113.
    Brewster ME, Loftsson T, Estes KS, Lin JL, Friðriksdóttir H. Effects of various cyclodextrins on solution stability and dissolution rate of doxorubicin hydrochloride.Int J Pharm. 1992;79:289–299.CrossRefGoogle Scholar
  114. 114.
    Ma DQ, Rajewski RA, Velde DV, Stella VJ. Comparative effects of (SBE)7m-beta-CD and HP-beta-CD on the stability of two anti-neoplastic agents, melphalan and carmustine.J Pharm Sci. 2000;89:275–287.CrossRefGoogle Scholar
  115. 115.
    Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations.Int J Pharm. 2002;235:179–192.CrossRefGoogle Scholar
  116. 116.
    Jarho P, Vander Velde D, Stella VJ. Cyclodextrin-catalyzed deacetylation of spironolactone is pH and cyclodextrin dependent.J Pharm Sci. 2000;89:241–249.CrossRefGoogle Scholar
  117. 117.
    Sortino S, Giuffrida S, De Guldi G, et al. The photochemistry of flutamide and its inclusion complex with beta-cyclodextrin: Dramatic effect of the microenvironment on the nature and on the efficiency of the photodegradation pathways.Photochem Photobiol. 2001;73:6–13.CrossRefGoogle Scholar
  118. 118.
    Mielcarek J. Photochemical stability of the inclusion complexes formed by modified 1, 4-dihydropyridine derivatives with beta-cyclodextrin.J Pharm Biomed Anal. 1997;15:681–686.CrossRefGoogle Scholar
  119. 119.
    Lutka A, Koziara J. Interaction of trimeprazine with cyclodextrins in aqueous solution.Chem Pharm Bull (Tokyo). 2000;57:369–374.Google Scholar
  120. 120.
    Croyle MA, Cheng X, Wilson JM. Development of formulations that enhance physical stability of viral vectors for gene therapy.Gene Ther. 2001;8:1281–1290.CrossRefGoogle Scholar
  121. 121.
    Dwivedi AK, Kulkami D, Khanna M, Singh S. Effect of cyclodextrins on the stability of new antimalarial compound N1-31-Acetyl/-41, 51-Dihydro-21 Furanyl-N4-(6-Methoxy, 8-Quinolinyl)-1-4-Pentane diamine.Ind J Pharm Sci. 1999;61:175–177.Google Scholar
  122. 122.
    Koester LS, Guterres SS, Le Roch M, Lima VLE, Zuanazzi JA, Bassani VI. Ofloxacin/beta-cyclodextrin complexation.Drug Dev Ind Pharm. 2001;27:533–540.CrossRefGoogle Scholar
  123. 123.
    Choi HG, Lee BJ, Han JH, et al. Terfenadine-beta-Cyclodextrin inclusion complex with antihistaminic activity enhancement.Drug Dev Ind Pharm. 2001;27:857–862.CrossRefGoogle Scholar
  124. 124.
    Aggarwal S, Singh PN, Mishra B. Studies on solubility and hypoglycemic activity of gliclazide beta-cyclodextrin-hydroxypropyl-methylcellulose complexes.Pharmazie. 2002;57:191–193.Google Scholar
  125. 125.
    Veiga F, Fernandes C, Teixeira F. Oral bioavailability and hypoglycaemic activity of tolbutamide/cyclodextrin inclusion complexes.Int J Pharm. 2000; 202:165–171.CrossRefGoogle Scholar
  126. 126.
    Fathy M, Sheha M. In vitro and in vivo evaluation of amylobarbitone/hydroxypropyl-β-cyclodextrin complex prepared by a freeze-drying method.Pharmazie. 2000;55:513–517.Google Scholar
  127. 127.
    Zuo Z, Kwon G, Stevenson B, Diakur J, Wiebe LI. Flutamide-Hydroxy proyl- β-cyclodextrin complex: formulation, physical characterization, and absorption studies using the Caco-2 in vitro model.J Pharm Pharm Sci. 2000;3:220–227.Google Scholar
  128. 128.
    Yoo SD, Yoon BM, Lee HS, Lee KC. Increased bioavailability of clomipramine after sublingual administration in rats.J Pharm Sci. 1999;88:1119–1121.CrossRefGoogle Scholar
  129. 129.
    Pitha J, Harman SM, Michel ME. Hydrophilic cyclodextrin derivatives enable effective oral administration of steroidal hormones.J Pharm Sci. 1986;75:165–167.CrossRefGoogle Scholar
  130. 130.
    Pitha J, Anaissie EJ, Uekama K. Gamma-cyclodextrin: testosterone complex suitable for sublingual administration.J Pharm Sci. 1987;76:788–790.CrossRefGoogle Scholar
  131. 131.
    Farag Badawy SI, Ghorab MM, Adeyeye CM. Bioavailability of danazol-hydroxypropyl-á-cylodextrin complex by different routes of administration.Int J Pharm. 1996;145:137–143.CrossRefGoogle Scholar
  132. 132.
    Jain AC, Aungust BJ, Adeyeye MC. Development and in vivo evaluation of buccal tablets prepared using danazol-sulfobutylether 7 beta-cyclodextrin (SBE 7) complexes.J Pharm Sci. 2002;91:1659–1668.CrossRefGoogle Scholar
  133. 133.
    Garcia-Rodriguez JJ, Torrado J, Bolas F. Improving bioavailability and anthelmentic activity of albendazole by preparing albendazole cyclodextrin complex.Parasite. 2001;8:S188-S190.Google Scholar
  134. 134.
    Jacobsen J, Bjerregaard S, Pedersen M. Cyclodextrin inclusion complexes of antimycotics intended to act in the oral cavity-drug supersaturation, toxicity on TR146 cells and release from a delivery system.Eur J Pharm Biopharm. 1999;48:217–224.CrossRefGoogle Scholar
  135. 135.
    Okimoto K, Ohike A, Ibuki R, et al. Design and evaluation of an osmotic pump tablet (OPT) for chlorpromazine using (SBE)7m-beta-CD.Pharm Res. 1999;16:549–554.CrossRefGoogle Scholar
  136. 136.
    Okimoto K, Miyake M, Ohnishi N, et al. Design and evaluation of an osmotic pump tablet (OPT) for prednisolone, a poorly water soluble drug, using (SBE)7m-beta-CD.Pharm Res. 1998;15:1562–1568.CrossRefGoogle Scholar
  137. 137.
    Funasaki N, Kawaguchi R, Hada S, Neya S. Ultraviolet spectroscopic estimation of microenvironments and bitter tastes of oxyphenonium bromide in cyclodextrin solutions.J Pharm Sci. 1999;88:759–762.CrossRefGoogle Scholar
  138. 138.
    Stevens DA. Intraconazole in cyclodextrin solution.Pharmacotherapy. 1999;9:603–611.CrossRefGoogle Scholar
  139. 139.
    Shinoda T, Kagatani S, Maeda A, et al. Sugar-branched-cyclodextrins as injectable drug carriers in mice.Drug Dev Ind Pharm. 1999;25:1185–1192.CrossRefGoogle Scholar
  140. 140.
    Blanchard J, Ugwu SO, Bhardwaj R, Dorr T. Anhydrous carbopol polymer gels for the topical delivery of oxygen/water sensitive compounds.Pharm Dev Technol. 2000;7:249–255.Google Scholar
  141. 141.
    Piel G, Evrard B, Van Hees T, Delattre L. Comparison of the IV pharmacokinetics in sheep of miconazole-cyclodextrin solutions and a micellar solution.Int J Pharm. 1999;180:41–45.CrossRefGoogle Scholar
  142. 142.
    Sideris EE, Koupparis MA, Macheras PE. Effect of cyclodextrins on protein binding of drugs: the diflunisal/hydroxypropyl-beta-cyclodextrin model case.Pharm Res. 1994;11:90–95.CrossRefGoogle Scholar
  143. 143.
    Grosse PY, Bressoile F, Rouanet P, Joulia JM, Pinguest F. Methyl-beta-cyclodextrin and doxorubicin pharmacokinetics and tissue concentrations following bolus injection of these drugs alone or together in the rabbit.Int J Pharm. 1999;180:215–223.CrossRefGoogle Scholar
  144. 144.
    Hirayama F, Mieda S, Miyamoto Y, Arima H, Uekama K. Heptakis (2, 6-di-O-methyl-3-O-acetyl)-beta-cyclodextrin: a water-soluble cyclodextrin derivative with low hemolytic activity.J Pharm Sci. 1999;88:970–975.CrossRefGoogle Scholar
  145. 145.
    Saarinen-Savolainen P, Jarvinen T, Araki-Sasaki K, Watanabe H, Urtti A. Evaluation of cytotoxicity of various ophthalmic drugs, eye drop excipients and cyclodextrins in an immortalized human corneal epithelial cell line.Pharm Res. 1998;15:1275–1280.CrossRefGoogle Scholar
  146. 146.
    Siefert B, Keipert S. Influence of alpha-cyclodextrin and hydroxyalkylated β-cyclodextrin derivatives on the corneal uptake and permeation aqueous pilocarpine-HCL solutions.J Pharm Sci. 1997;86:716–720.CrossRefGoogle Scholar
  147. 147.
    Becirevic-Lacan M, Filipovic-Grcic J. Effect of hydroxypropyl-beta-cyclodextrin on hydrocortisone dissolution from films intended for ocular drug delivery.Pharmazie. 2000;55:518–520.Google Scholar
  148. 148.
    Aktas Y, Unlu N, Orhan M, Irkec M, Hincal AA. Influence of hydroxypropyl β-cyclodextrin on the corneal permeation of pilocarpine.Drug Dev Ind Pharm. 2003;29:223–230.CrossRefGoogle Scholar
  149. 149.
    Merkus FW, Verhoef JC, Marttin E, et al. Cyclodextrin in nasal drug delivery.Adv Drug Deliv Rev. 1999;36:41–57.CrossRefGoogle Scholar
  150. 150.
    Loftsson T, Gudmundsdottir H, Sigurjonsdottir JF, et al. Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray.Int J Pharm. 2001;212:29–40.CrossRefGoogle Scholar
  151. 151.
    Zhang Y, Jiang XG, Yao J. Nasal absorption enhancement of insulin by sodium deoxycholate in combination with cyclodextrins.Acta Pharmacol Sin. 2001;22:1051–1056.Google Scholar
  152. 152.
    Srichana T, Suedee R, Reanmongkol W. Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in vitro deposition and toxicity studies of the complexes.Respir Med. 2001;95:513–519.CrossRefGoogle Scholar
  153. 153.
    Gudmundsdottir H, Sigurjonsdottir JF, Masson M, Fjalldal O, Stefansson E, Loftsson T. Intranasal administration of midazolam in a cyclodextrin based formulation: bioavailability and clinical evaluation in humans.Pharmazie. 2001;56:963–966.Google Scholar
  154. 154.
    Uekama K, Kondo T, Nakamura K, et al. Modification of rectal absorption of morphine from hollow-type suppositories with a combination of alpha-cyclodextrin and viscosity-enhancing polysaccharide.J Pharm Sci. 1995;84:15–20.CrossRefGoogle Scholar
  155. 155.
    Kowari K, Hirosawa I, Kurai H, Utoguchi N, Fujii M, Watanabe Y. Pharmacokinetics and pharmacodynamics of human chorionic gonadotropin (hCG) after rectal administration of hollow-type suppositories containing hCG.Biol Pharm Bull. 2002;25:678–681.CrossRefGoogle Scholar
  156. 156.
    Hirayama F, Uekama K. Cyclodextrin-based controlled drug release system.Adv Drug Deliv Rev. 1999;36:125–141.CrossRefGoogle Scholar
  157. 157.
    Sinha VR, Nanda A, Kumria R. Cyclodextrins as sustained-release carriers.Pharmaceutical Technology. 2002. Available at: http://www. pharmtech.com. Accessed May 25, 2005.Google Scholar
  158. 158.
    Horiuchi Y, Hirayama F, Uekama K. Slow-release characteristics of diltiazem from ethylated β-cyclodextrin complex.J Pharm Sci. 1990;79:128–132.CrossRefGoogle Scholar
  159. 159.
    Hirayama F, Hirashima N, Abe K, Uekama K, Ijitsu T, Ueno M. Utilization of diethyl-beta-cyclodextrin as a sustained-release carrier for isosorbide dinitrate.J Pharm Sci. 1988;77:233–236.CrossRefGoogle Scholar
  160. 160.
    Uekama K, Horikawa T, Yamanaka M, Hirayama F. Peracylated β-cyclodextrins as, novel sustained-release carriers for a water-soluble drug, molsidomine.J Pharm Pharmacol. 1994;46:714–717.Google Scholar
  161. 161.
    Wang Z, Horikawa T, Hirayama F, Uekama K. Design and in vitro evaluation of a modified-release oral dosage form of nifedipine by hybridization of hydroxypropyl-beta-cyclodextrin and hydroxypropyl-cellulose.J Pharm Pharmacol. 1993;45:942–946.Google Scholar
  162. 162.
    Quaglia F, Varricchio G, Miro A, La Rotonda MI, Larobina D. Mensitieri G. Modulation of drug release from hydrogels by using cyclodextrins: the case of nicardipine/ beta-cyclodextrin system in crosslinked polyethylenglycol.J Control Release. 2001;71:329–337.CrossRefGoogle Scholar
  163. 163.
    Rao VM, Haslam JL, Stella VJ. Controlled and complete release of a model poorly water-soluble drug, prednisolone from hydroxypropyl methylcellulose matrix tablets using (SBE) (7m)-beta-cyclodextrin as a solubilizing agent.J Pharm Sci. 2001;90:807–816.CrossRefGoogle Scholar
  164. 164.
    Fernandes CM, Teresa Viera M, Veiga FJ. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds.Eur J Pharm Sci. 2002;15:79–88.CrossRefGoogle Scholar
  165. 165.
    Fernandes CM, Ramos P, Falcao AC, Veiga FJ. Hydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation bioavailability studies in rabbits.J Control Release. 2003;88:127–134.CrossRefGoogle Scholar
  166. 166.
    Chowdary KPR, Reddy GK. Complexes of nifedipine with β- and hydroxypropyl-β-cyclodextrin in the design of nifedipine SR tablets.Ind J Pharm Sci. 2002;64:142–146.Google Scholar
  167. 167.
    Burgos AE, Belchior JC, Sinisterra RD. Controlled release of rhodium (II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix.Biomaterials. 2002;23:2519–2526.CrossRefGoogle Scholar
  168. 168.
    Minami K, Hirayama F, Uekama K. Colon-specific drug delivery based on a cyclodextrin prodrug: release behavior of biphenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration.J Pharm Sci. 1998;87:715–720.CrossRefGoogle Scholar
  169. 169.
    Hirayama F, Ogata T, Yano H, et al. Release characteristics of a short-chain fatty acid, n-butyric acid from its beta-cyclodextrin ester conjugate in rat biological media.J Pharm Sci. 2000;89:1486–1495.CrossRefGoogle Scholar
  170. 170.
    Yano H, Hirayama F, Kamada M, Arima H, Uekama K. Colon-specific delivery of prednisolone-appended alpha-cyclodextrin conjugate: alleviation of systemic side effect after oral administration.J Control Release. 2002;79:103–112.CrossRefGoogle Scholar
  171. 171.
    Lopez MEV, Reyes LN, Igea SA, Espinar FJO, Mendez JB. Formulation of triamcinolone acetonide pellets suitable for coating and colon targeting.Int J Pharm. 1999;79:229–235.CrossRefGoogle Scholar
  172. 172.
    Irie T, Uekama K. Cyclodextrins in peptide and protein delivery.Adv Drug Deliv Rev. 1999;36:101–123.CrossRefGoogle Scholar
  173. 173.
    Augustijns PF, Bradshaw TP, Gan LSL, Hendren RW, Thakker DR. Evidence for a polarized efflux system in caco-2 cells capable of modulating cyclosporin a transport.Biochem Biophys Res Commun. 1993;197:360–365.CrossRefGoogle Scholar
  174. 174.
    Burton PS, Conradi RA, Hilgers AR, Ho NFH. Evidence for a polarized efflux system for peptides in the apical membrane of caco-2 cells.Biochem Biophys Res Commun. 1993; 190:760–766.CrossRefGoogle Scholar
  175. 175.
    Ueda K, Shimabuku, AM, Konishi H, et al. Functional expression of human P-glycoprotein inSchizosaccharomyces pombe.FEBS Lett. 1993;330:279–282.CrossRefGoogle Scholar
  176. 176.
    Loe DW, Sharom FJ. Interaction of multidrug-resistant Chinese hamster ovary cells with the peptide ionophore gramicidin D.Biochim Biophys Acta. 1994;1190:72–84.CrossRefGoogle Scholar
  177. 177.
    Takahashi H, Kim RB, Perry PR, Wilkinson GR. Characterization of the hepatic canalicular membrane transport of a model oligopeptide: ditekiren.J Pharm Exp Therapeutics. 1997;281:297–303.Google Scholar
  178. 178.
    Sharom FJ, Xiaohong YU, DioDiodato G, Chu JWK. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport.Biochem J. 1996;320:421–428.Google Scholar
  179. 179.
    McNally EJ, Park JY. Peptides and Proteins- Oral Absorption. In: Swarbrick J, Boylan JC, eds.Encyclopedia of Pharmaceutical Technology. 2nd ed. New York, NY: Marcell Dekker; 2002:2096–2113.Google Scholar
  180. 180.
    Arima H, Yunomae K, Morikawa T, Hirayama F, Uekama K. Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-β-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers.Pharm Res. 2004;21:625–634.CrossRefGoogle Scholar
  181. 181.
    Arima H, Yunomae K, Hirayama F, Uekama K. Contribution of P-glycoprotein to the enhancing effects of dimethyl-β-cyclodextrin on oral bioavailability of Tacrolimus.J Pharm Exp Therapeutics. 2001;297:547–555.Google Scholar
  182. 182.
    Verhoef JC, Schipper NGM, Romejin SG, Merkus FWHM. The potential of cyclodextrins as absorption enhancers in nasal delivery of peptide drugs.J Control Release. 1994;29:351–360.CrossRefGoogle Scholar
  183. 183.
    Jerry N, Anitha Y, Sharma CP, Sony P. In vivo, absorption studies of insulin from an oral delivery system.Drug Deliv. 2001;8:19–23.CrossRefGoogle Scholar
  184. 184.
    Dass CR. Vehicles for oligonucleotide delivery.J Pharm Pharmacol. 2002; 54:3–27.CrossRefGoogle Scholar
  185. 185.
    Redenti E, Pietra C, Gerlozy A, Szente L. Cyclodextrins in oligonucleotide delivery.Adv Drug Deliv Rev. 2001;53:235–244.CrossRefGoogle Scholar
  186. 186.
    Driscoll CO, Darcy R. Cyclodextrin constructs for delivery of genotherapeutic agents.Business Briefing: Pharmatech2002. Available at: http://www.bbriefingscom/pdf/17/ACF9C6C.pdf. Accessed May 25, 2005.Google Scholar
  187. 187.
    Hwang SJ, Bellocq NC, Davis ME. Effects of structure of β-cyclodextrin-containing polymers on gene delivery,Bioconjugate Chem. 2001;12:280–290.CrossRefGoogle Scholar
  188. 188.
    Pun SH, Davis DE. Development of a nonviral gene delivery vehicle for systemic application.Bioconjugate Chem. 2002;13:630–639.CrossRefGoogle Scholar
  189. 189.
    Croyle MA, Roessler BJ, Hsu CP, Sun R, Amidon GL. Beta cyclodextrins enhance adenoviral-mediated gene delivery to the intestine.Pharm Res. 1998;15:1348–1355.CrossRefGoogle Scholar
  190. 190.
    Lopez RF, Collett JH, Bently MV. Influence of cyclodextrin complexation on the in vitro permeation and skin metabolism of dexamethasone.Int J Pharm. 2000;200:127–132.CrossRefGoogle Scholar
  191. 191.
    Orienti I, Zecchi V, Bernabei S, Sentimenti S, Fini A. Diffusion of ketoprofen from coprecipitates through a non porous lipidic membrane.Boll Chim Farm. 1989;128:336–343.Google Scholar
  192. 192.
    Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice.Int J Pharm. 2001;225:15–30.CrossRefGoogle Scholar
  193. 193.
    Chang SL, Banga AK. Transdermal iontophoretic delivery of hydrocortisone from cyclodextrin solutions.J Pharm Pharmacol. 1988;50:635–640.Google Scholar
  194. 194.
    Doliwa A, Santoyo S, Ygartua P. Transdermal iontophoresis and skin retention of piroxicam from gels containing piroxicam: hydroxypropyl-beta-cyclodextrin complexes.Drug Dev Ind Pharm. 2001;27:751–758.CrossRefGoogle Scholar
  195. 195.
    Tanaka M, Matsuda H, Sumiyoshi H, et al. 2-Hydroxy- propylated cyclodextrins as a sustained release carrier for fragrance materials.Chem Pharm Bull (Tokyo). 1996;44:416–420.Google Scholar
  196. 196.
    Buschmann HJ, Schollmeyer E. Applications of cyclodextrins in cosmetic products: a review.J Cosmet Sci. 2002;53:185–191.Google Scholar
  197. 197.
    Brewster ME, Loftsson T. The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems.Pharmazie. 2002;57:94–101.Google Scholar
  198. 198.
    Wu WM, Wu J, Bodor N. Effect of 2-hydroxypropyl-beta-cyclodextrin on the solubility, stability, and pharmacological activity of the chemical delivery system of TRH analogs.Pharmazie. 2002;57:130–134.Google Scholar
  199. 199.
    McCormack B, Gregoriadis G. Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery.J Drug Target. 1994;2:449–454.CrossRefGoogle Scholar
  200. 200.
    McCormack B, Gregoriadis G. Drugs-in-cyclodextrins-in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo.Int J Pharm. 1998;162:59–69.CrossRefGoogle Scholar
  201. 201.
    McCormack B, Gregoriadis G. Drugs-in-cyclodextrins-in liposomes: a novel concept in drug delivery.Int J Pharm. 1994;112:249–258.CrossRefGoogle Scholar
  202. 202.
    Duchene D, Ponchel G, Wouessidjewe D. Cyclodextrins in targeting. Application to nanoparticles.Adv Drug Del Rev. 1999;36:29–40.CrossRefGoogle Scholar
  203. 203.
    McCormack B, Gregoriadis G. Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-/3-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery.Biochim Biophys Acta. 1996;1291:237–244.Google Scholar
  204. 204.
    Skalko N, Brandl M, Ladan MB, Grid JF, Genjak IJ. Liposomes with nifedipine and nifedipine-cyclodextrin complex: calorimetricalEur J Pharm Sci. 1996;4:359–366.CrossRefGoogle Scholar
  205. 205.
    Fatouros DG, Hatzidimitriu K, Antimisiaris SG. Liposomes encapsulating prednisolone- cyclodextrin complexes: comparision of membrane integrity and drug release.Eur J Pharm Sci. 2001;13:287–296.CrossRefGoogle Scholar
  206. 206.
    Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method.Drug Dev Ind Pharm. 2000;26:1279–1284.CrossRefGoogle Scholar
  207. 207.
    Loukas YL, Jayasekera P, Gregoriadis G. Novel liposome-based multicomponent systems for the protection of photolabile agents.Int J Pharm. 1995;117:85–94.CrossRefGoogle Scholar
  208. 208.
    Loukas YL, Vraka V, Gregoriadis G. Drugs, in cyclodextrins, in liposomes: a novel approach to the chemical stability of drugs sensitive to hydrolysis.Int J Pharm. 1998;162:137–142.CrossRefGoogle Scholar
  209. 209.
    Sukegawa T, Furuike T, Niikura K, Yamagishi A, Monde K, Nishimura S. Erythrocyte-like liposomes prepared by means of amphiphilic cyclodextrin sulfates.Chem Commun. 2002;5:430–431.CrossRefGoogle Scholar
  210. 210.
    Filipovic-Grcic J, Laan MB, Skalko N, Jalsenjak I. Chitosan microspheres of nifedipine and nifedipine-cyclodextrin inclusion complexes.Int J Pharm. 1996;135:183–190.CrossRefGoogle Scholar
  211. 211.
    Filipovic-Grcic J, Voinovich D, Moneghini M, Becirevic-Lacan M, Magarotto L, Jalsenjak I. Chitosan microspheres with hydrocortisone and hydrocortisone-hydroxypropyl-b-cyclodextrin inclusion complex.Eur J Pharm Sci. 2000;9:373–379.CrossRefGoogle Scholar
  212. 212.
    Bibby DC, Davies NM, Tucker IG. Investigations into the structure and composition of beta-cyclodextrin/poly (acrylic acid) microspheres.Int J Pharm. 1999;180:161–168.CrossRefGoogle Scholar
  213. 213.
    Bibby DC, Davies NM, Tucker IG. Poly (acrylic acid) microspheres containing β-cyclodextrin: loading and in vitro release of two dyes.Int J Pharm., 1999;187:243–250.CrossRefGoogle Scholar
  214. 214.
    Kang F, Jiang G, Hinderliter A, Luca PPD, Singh J. Lysozyme stability in primary emulsion for PLGA microsphere preparation: effect of recovery methods and stabilizing excipients.Pharm Res. 2002;19:629–633.CrossRefGoogle Scholar
  215. 215.
    Kang F, Singh J. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis.Int J Pharm. 2003; 260:149–156.CrossRefGoogle Scholar
  216. 216.
    Quaglia F, De Rosa G, Granata E, Ungaro F, Fattal E, La Rotonda MI. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray-drying.J Control Release. 2003;86:267–278.CrossRefGoogle Scholar
  217. 217.
    Fundueanu G, Constantin M, Dalpiaz A, et al. Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy®) in allergic rhinitis treatment.Biomaterials. 2004;25:159–170.CrossRefGoogle Scholar
  218. 218.
    Constantin M, Fundueanu G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E. Preparation and characterisation of poly(vinyl alcohol)/ cyclodextrin microspheres as matrix for inclusion and separation of drugs.Int J Pharm. 2004;285:87–96.CrossRefGoogle Scholar
  219. 219.
    Pariot N, Levy FE, Andry MC, Levy MC. Cross-linked beta-cyclodextrin microcapsules. II. Retarding effect on drug release through semi-permeable membranes.Int J Pharm. 2002;232:175–181.CrossRefGoogle Scholar
  220. 220.
    Memisoglu E, Bochot A, Sen M, Duchene D, Hincal AA. Non-surfactant nanospheres of progesterone inclusion complexes with amphiphilic β-cyclodextrins.Int J Pharm. 2003;251:143–153.CrossRefGoogle Scholar
  221. 221.
    Monza da Silveira A, Ponchel G, Puisieux F, Duchene D. Combined poly (isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs.Pharm Res. 1998;15:1051–1055.CrossRefGoogle Scholar
  222. 222.
    Duchene D, Ponchel G, Wouessidjewe D. Cyclodextrins in targeting Application to nanoparticles.Adv Drug Deliv Rev. 1999;36:29–40.CrossRefGoogle Scholar
  223. 223.
    Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G. Combined hydroxypropyl-beta-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir.Int J Pharm. 2001;218:113–124.CrossRefGoogle Scholar
  224. 224.
    Radwan MA. Preparation and in vivo evaluation of parenteral metoclopramide-loaded poly (alkylcyanoacrylate) nanospheres in rats.J Microencapsul. 2001;18:467–477.CrossRefGoogle Scholar
  225. 225.
    Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with betacyclodextrins.Int J Pharm. 1999;182:59–69.CrossRefGoogle Scholar
  226. 226.
    Memisoglu E, Bochot A, Sen M, Charon D, Duchene D, Hincal AA. Amphiphilic beta-cyclodextrins modified on the primary face: synthesis, characterization, and evaluation of their potential as novel excipients in the preparation of nanocapsules.J Pharm Sci. 2002;91:1214–1224.CrossRefGoogle Scholar
  227. 227.
    Memisoglu E, Bochot A, Ozalp M, Sen M, Duchene D, Hincal AA. Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes.Pharm Res. 2003;20:117–125.CrossRefGoogle Scholar
  228. 228.
    Gèze A, Aous S, Baussanne I, Putaux JL, Defaye J, Wouessidjewe D. Influence of chemical structure of amphiphilic β-cyclodextrins on their ability to form stable nanoparticles.Int J Pharm. 2002;242:301–305.CrossRefGoogle Scholar
  229. 229.
    Shangraw RF, Pande GS, Gala P. Charactarisation of the tableting properties of beta cyclodextrin: the effects of processing variableson the inclusion complex formation, compactability and dissolution.Drug Dev Ind Pharm. 1992;18:1831–1851.CrossRefGoogle Scholar
  230. 230.
    Suihko E, Korhoneno O, Jarvinen T, et al. Complexation with tolbutamide modifies, the physicochemical and tableting properties of hydroxypropyl-beta-cyclodextrin.Int J Pharm. 2001;215:137–145.CrossRefGoogle Scholar
  231. 231.
    Tsai T, Wu JS, Ho HO, Sheu MT. Modification of physical characteristics of microcrystalline cellulose by codrying with beta-cyclodextrins.J Pharm Sci. 1998;87:117–122.CrossRefGoogle Scholar
  232. 232.
    Li WD, Huang JC, Corke H. Effect of beta-cyclodextrin on pasting properties of wheat starch.Nahrung. 2000;44:164–167.CrossRefGoogle Scholar
  233. 233.
    Wu J, Ho H, Sheu M. Influence of wet granuation and lubrication on the powder and tableting properties of codried product of microcrystalline cellulose with beta-cyclodextrin.Eur J Pharm Biopharm. 2001;51:63–69.CrossRefGoogle Scholar
  234. 234.
    Gazzaniga A, Sangalli ME, Bruni G, Zema L, Vecchio C, Giordano F. The use of beta-cyclodextrin as a pelletization agent in the extrusion/ spheronization process.Drug Dev Ind Pharm. 1998;24:869–873.Google Scholar
  235. 235.
    Branchu S, Forbes RT, York P, Petren S, Nyquest H, Camber O. Hydroxypropyl-beta-cyclodextrin inhibits spray-drying-induced inactivation of beta-galactosidase.J Pharm Sci. 1999;88:905–911.CrossRefGoogle Scholar
  236. 236.
    Tokihiro K, Irie T, Uekama K. Varying effects of cyclodextrin derivatives on aggregation and thermal behavior of insulin in aqueous solution.Chem Pharm Bull (Tokyo). 1997;45:525–531.Google Scholar
  237. 237.
    Kitamura S, Fujimura T, Kohda S. Interaction between surface-active drug (FK906, rennin inhibitor) and cyclodextrins in aqueous solution.J Pharm Sci. 1999;88:327–330.CrossRefGoogle Scholar
  238. 238.
    Blanco-Fuente H, Esteban-Fernandez B, Blanco-Mendez J, Otero-Espinar FJ. Use of beta-cyclodextrins to prevent modifications of the properties of carbopol hydrogels due to carbopol-drug interactions.Chem Pharm Bull (Tokyo). 2002;50:40–46.CrossRefGoogle Scholar
  239. 239.
    Muñoz-Ruiz AM, Paronen P. Particle and powder properties of cyclodextrins.Int J Pharm. 1997;148:33–39.CrossRefGoogle Scholar
  240. 240.
    Zannou EA, Streng WH, Stella VJ. Osmotic properties of sulfo-butylether and hydroxypropyl cyclodextrins.Pharm Res. 2001;18:1226–1231.CrossRefGoogle Scholar
  241. 241.
    Proniuk S, Blanchard J. Influence of degree of substitution of cyclodextrins on their colligative properties in solution.J Pharm Sci. 2001;90:1086–1090.CrossRefGoogle Scholar
  242. 242.
    Loftsson T, Stefansdottir O, Friariksdottir H, Guomundsson O. Interaction between preservatives and 2-hydroxypropyl β-cyclodextrin.Drug Dev Ind Pharm. 1992;18:1477–1484.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  • Rajeswari Challa
    • 1
  • Alka Ahuja
    • 1
  • Javed Ali
    • 1
  • R. K. Khar
    • 1
  1. 1.Department of Pharmaceutics, Faculty of PharmacyHamdard UniversityNew DelhiIndia

Personalised recommendations