AAPS PharmSci

, Volume 6, Issue 1, pp 68–76

β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies

  • M. Narender Reddy
  • Tasneem Rehana
  • S. Ramakrishna
  • K. P. R. Chowdary
  • Prakash V. Diwan
Article

Abstract

Celecoxib, a specific inhibitor of cycloxygenase-2 (COX-2) is a poorly water-soluble nonsteroidal anti-inflammatory drug with relatively low bioavailability. The effect of β-cyclodextrin on the aqueous solubility and dissolution rate of celecoxib was investigated. The possibility of molecular arrangement of inclusion complexes of celecoxib and β-cyclodextrin were studied using molecular modeling and structural designing. The results offer a better correlation in terms of orientation of celecoxib inside the cyclodextrin cavity. Phase-solubility profile indicated that the solubility of celecoxib was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1∶1 stoichiometric inclusion complexes. Solid complexes prepared by freeze drying, evaporation, and kneading methods were characterized using differential scanning calorimetry, powder x-ray diffractometry, and scanning electron microscopy. In vitro studies showed that the solubility and dissolution rate of celecoxib were significantly improved by complexation with β-cyclodextrin with respect to the drug alone. In contrast, freeze-dried complexes showed higher dissolution rate than the other complexes.

Keywords

celecoxib β-cyclodextrin complexation molecular-modeling phase solubility characterization dissolution rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies NM, McLachlan AJ, Day RO, Williams KM. Clinical pharmacokinetics and pharmacodynamics of celecoxib. Clin Pharmacokinet. 2000;38:225–242.CrossRefPubMedGoogle Scholar
  2. 2.
    Simon LS, Lanza FL, Lipsky PE. Preliminary study of the safety and efficacy of SC-58635, a novel cyclooxygenase-2 inhibitor. Arthritis Rheum. 1998;41:1591–1602.CrossRefPubMedGoogle Scholar
  3. 3.
    Hubbard RC, Koepp RJ, Yu S. SC-58635 (celecoxib), a novel COX-2 selective inhibitor, is effective as a treatment for osteoarthritis (OA) in a short-term pilot study [abstract]. Arthritis Rheum. 1996;39:S226. Abstract 1188.CrossRefGoogle Scholar
  4. 4.
    Hubbard RC, Mehlisch DR, Jasper DR. SC-58635, a highly selective inhibitor of COX-2, is an effective analgesic in an acute post-surgical pain model [Abstract]. J Invest Med. 1996;44: Abstract 293.Google Scholar
  5. 5.
    Paulson SK, Vaughn MB, Jessen SM, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther. 2001;297:638–645.PubMedGoogle Scholar
  6. 6.
    FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med. 2001;345:433–442.CrossRefPubMedGoogle Scholar
  7. 7.
    Szejtli J. Cyclodextrin Technology. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1988:81–83.CrossRefGoogle Scholar
  8. 8.
    Loftson T, Brewster ME. Pharmaceutical applications of cyclodextrins: 1. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–1025.CrossRefGoogle Scholar
  9. 9.
    Connors KA. The stability of cyclodextrin complexes in solution. Chem Rev. 1997;97:1325–1357.CrossRefPubMedGoogle Scholar
  10. 10.
    Uekema K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98:2045–2076.CrossRefGoogle Scholar
  11. 11.
    Stella VJ, Rajiwski RA. Cyclodextrins: Their future in drug formulation and delivery. Pharm Res. 1997;14:556–567.CrossRefPubMedGoogle Scholar
  12. 12.
    Uekama K, Hirayama F. Methods of investigating and preparing inclusion compounds. In: Duchene D, ed. Cyclodextrins and Their Industrial Uses. Paris, France: Editions de Santé; 1987:131–172.Google Scholar
  13. 13.
    Erden N, Celebi N. A study of the inclusion complex of naproxen with β-cyclodextrin. Int J Pharm. 1988;48:83–89.CrossRefGoogle Scholar
  14. 14.
    Pop MM, Goubitz K, Borodi G, Bogdan M, De Ridder DJ, Peschar R, Schenk H. Crystal structure of the inclusion complex of betacyclodextrin with mefenamic acid from high-resolution synchrotron powder-diffraction data in combination with molecular-mechanics calculations. Acta Crystallogr B. 2002;58:1036–1043.CrossRefPubMedGoogle Scholar
  15. 15.
    Bonmet P, Jaime C, Morin-Allory L. Alpha-, beta-, and gamma-Cyclodextrin dimers: Molecular modeling studies by molecular mechanics and molecular dynamics simulations. J Org Chem. 2001;66:689–692.CrossRefGoogle Scholar
  16. 16.
    Ding HO, Karasawa N, Goddard WA. Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions. J Chem Physiol. 1992;97(6):4309–4315.CrossRefGoogle Scholar
  17. 17.
    Swope WC, Andersen HC. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J Chem Physiol. 1982;76(1):637–649.CrossRefGoogle Scholar
  18. 18.
    Higuchi T, Connors KA. Phase solubility diagram. Adv Anal Chem Instrum. 1965;4:117–212.Google Scholar
  19. 19.
    Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–49.CrossRefPubMedGoogle Scholar
  20. 20.
    Furlanetto S, Maestrelli F, Orlandini S, Pinzauti S, Mura P. Optimization of dissolution test precision for a ketoprofen oral extended-release product. J Pharm Biomed Anal. 2003;32:159–165.CrossRefPubMedGoogle Scholar
  21. 21.
    Marques CH, Hadgraft J, Kellaway I. Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int J Pharm. 1990;63:259–266.CrossRefGoogle Scholar
  22. 22.
    Uekama K, Hirayama F. Improvement of drug properties by cyclodextrin. In: Wermuth CG, ed. The Practice of Medicinal Chemistry. London, UK: Academic Press, 1996:793–825.Google Scholar
  23. 23.
    Szetli J. Medicinal applications of cyclodextrins. Med Res Rev. 1994;14:353–386.CrossRefGoogle Scholar
  24. 24.
    Trapani G, Latrofa A, Franco M, et al. Complexation of Zolpiden with 2-hydroxypropyl-b-, methyl-b-, and 2-hydroxypropyl-g-cyclodextrin: Effect on aqueous solubility, dissolution rate and ataxic activity in rat. J Pharm Sci. 2000;89:1443–1451.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2004

Authors and Affiliations

  • M. Narender Reddy
    • 1
  • Tasneem Rehana
    • 2
  • S. Ramakrishna
    • 1
  • K. P. R. Chowdary
    • 3
  • Prakash V. Diwan
    • 1
  1. 1.Pharmacology DivisionIndian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Molecular Modeling GroupIndian Institute of Chemical TechnologyHyderabadIndia
  3. 3.Department of Pharmaceutical Sciences, College of EngineeringAndhra UniversityVisakhapatnamIndia

Personalised recommendations