AAPS PharmSci

, Volume 3, Issue 3, pp 81–85

Use of FT-NIR transmission spectroscopy for the quantitative analysis of an active ingredient in a translucent pharmaceutical topical gel formulation

  • Mark S. Kemper
  • Edgar J. Magnuson
  • Stephen R. Lowry
  • William J. McCarthy
  • Napasinee Aksornkoae
  • D. Christopher Watts
  • James R. Johnson
  • Atul J. Shukla
Article
  • 389 Downloads

Abstract

The objective of this study was to demonstrate the use of transmission Fourier transform near-infrared (FT-NIR) spectroscopy for quantitative analysis of an active ingredient in a translucent gel formulation. Gels were prepared using Carbopol 980 with 0%, 1%, 2%, 4%, 6%, and 8% ketoprofen and analyzed with an FT-NIR spectrophotometer operated in the transmission mode. The correlation coefficient of the calibration was 0.9996, and the root mean squared error of calibration was 0.0775%. The percent relative standard deviation for multiple measurements was 0.10%. The results prove that FT-NIR can be a good alternative to other, more time-consuming means of analysis for these types of formulations.

Keywords

FT-NIR Transmission Spectroscopy Carbopol Topical Formulations Ketoprofen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drennen JK, Kramer EG, Lodder RA. Advances and perspectives in near-infrared spectrophotometry. Crit Rev Anal Chem. 1991;22(6):443–475.CrossRefGoogle Scholar
  2. 2.
    Plugge W, van der Vlies C. The use of near-infrared spectroscopy in the quality control laboratory of the pharmacentical industry. J Pharm Biomed Anal. 1992;10(10–12):797–803.PubMedCrossRefGoogle Scholar
  3. 3.
    Plugge W, van der Vlies C. Near-infrared spectroscopy as an alternative to assess compliance of ampicillin trihydrate with compendial specifications. J. Pharm Biomed Anal. 1993;11(6):435–442.PubMedCrossRefGoogle Scholar
  4. 4.
    Gerhausser PCI, Kovar KA. Strategies for constructing near-infrared spectral libraries for the identification of drug substances. Appl Spectrosc. 1997;51(10):1504–1510.CrossRefGoogle Scholar
  5. 5.
    Derksen MWJ, van de Oetelaar PJM, Maris FA. The use of near-infrared spectroscopy in the efficient prediction of a specification for the residual moisture content of a freeze-dried product. J Pharm Biomed Anal. 1998;17:473–480.PubMedCrossRefGoogle Scholar
  6. 6.
    Moretti MD, Gavini E, Peana AT. In vitro release and antiinflammatory activity of topical formulations of ketoprofen. Boll Chim Farm. 2000;139(2):67–72.PubMedGoogle Scholar
  7. 7.
    Gurol Z, Hekimoglu S, Demirdamar R, Sumnu M. Percutaneous absorption of ketoprofen I. In vitro release and percutaneous absorption of ketoprofen from different ointment bases. Pharm Acta Helv. 1996;71(3):205–212.PubMedCrossRefGoogle Scholar
  8. 8.
    Norris KH, Williams PC. Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat: I. Influence of particle size. Cereal Chem. 1984;61:158–165.Google Scholar
  9. 9.
    Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964;36:1627–1639.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2001

Authors and Affiliations

  • Mark S. Kemper
    • 1
  • Edgar J. Magnuson
    • 1
  • Stephen R. Lowry
    • 1
  • William J. McCarthy
    • 1
  • Napasinee Aksornkoae
    • 2
  • D. Christopher Watts
    • 2
  • James R. Johnson
    • 2
  • Atul J. Shukla
    • 2
  1. 1.Thermo Nicolet CorporationMadison
  2. 2.Department of Pharmaceutical Sciences, The University of TennesseeCollege of PharmacyMemphis

Personalised recommendations