AAPS PharmSci

, Volume 3, Issue 2, pp 48–56 | Cite as

Visualization of the lipid barrier and measurement of lipid pathlength in human stratum corneum

  • Priva S. Talreja
  • Gerald B. KastingEmail author
  • Nancy K. Kleene
  • William L. Pickens
  • Tsuo-Feng Wang


Detailed models of solute transport through the stratum corneum (SC) require an interpretation of apparent bulk diffusion coefficients in terms of microscopic transport properties. Modern microscopy techniques provide a tool for evaluating one key property—lipid pathway tortuosity—in more detail than previously possible. Microscopic lipid pathway measurements on alkali expanded human SC stained with the lipid-soluble dyes methylene blue, Nile red, and oil red O are described. Brightfield, differential interference contrast, fluorescence, and laser scanning confocal optics were employed to obtain 2-dimensional (2-D) and 3-dimensional (3-D) images. The 2-D techniques clearly outlined the corneocytes. Confocal microscopy using Nile red yielded a well-delineated 3-D structure of expanded SC. Quantitative assessment of the 2-D images from a small number of expanded SC samples led to an average value of 3.7 for the ratio of the shortest lipid-continuous pathway to the width of the membrane. This was corrected for the effect of alkaline expansion to arrive at an average value of 12.7 for the same ratio prior to swelling.

Key Words

Stratum Corneum Alkaline Expansion Microscopy Lipid Pathlength Tortuosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev 1971; 51:702–747.PubMedGoogle Scholar
  2. 2.
    Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: theory and in vitro experimental measurement. Am Inst Chem Eng J. 1975;21:985–996.CrossRefGoogle Scholar
  3. 3.
    Ackermann C, Flynn GL, Smith WM. Ether-water partitioning and permeability through nude mouse skin in vitro. II. Hydrocortisone 21-n-alkyl esters, alkanols and hydrophilic compounds. Int J Pharm. 1987;36:67–71.CrossRefGoogle Scholar
  4. 4.
    Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–669.PubMedCrossRefGoogle Scholar
  5. 5.
    Kasting GB, Smith RL, Anderson BD. Prodrugs for dermal delivery solubility, molecular size, and functional group effects. In: Sloan KB, ed. Prodrugs Topical and Ocular Drug Delivery. New York, NY: Marcel Dekker, 1992:117–161.Google Scholar
  6. 6.
    Johnson ME, Blankschtein D, Langer R. Evaluation of solute permeation through the stratum corneum lateral bilayer diffusion as the primary transport mechanism. J Pharm Sci. 1997;86:1162–1172.PubMedCrossRefGoogle Scholar
  7. 7.
    Bodde HE, van den Brink I, Koerten HK, de Haan FHN. Visualization of in vitro percutaneous penetration of mercuric chloride transport through intercellular space versus cellular uptake through desmosomes. J Control Rel. 1991;15:227–236.CrossRefGoogle Scholar
  8. 8.
    Flynn GL. Mechanism of percutaneous absorption from physicochemical evidence. In: Bronaugh RL, Maibach HI, eds. Percutaneous Absorption. New York, NY: Marcel Dekker; 1985:27–51Google Scholar
  9. 9.
    Turner NG, Nonato LB. Visualization of stratum corneum and transdermal permeation pathways In: Potts RO, Guy RH, eds. Mechanisus of Transdermal Drug Delivery. New York, NY: Marcel Dekker; 1997:1–40.Google Scholar
  10. 10.
    Potts RO, Francoeur M. The influence of stratum corneum morphology on water permeability. J Invest Dermatol. 1991;96:495–499.PubMedCrossRefGoogle Scholar
  11. 11.
    Heisig M, Lieckfeldt R, Wittum G, Mazurkevich G, Lee G. Non steady-state descriptions of drug permeation through stratum corneum. I. The biphasic brick and mortar model. Pharm Res. 1996;13:421–426.PubMedCrossRefGoogle Scholar
  12. 12.
    Charalambopoulou GC, Karamertzanis P, Kikkinides ES, Stubos AK, Kanellopoulos NK, Papaioannou AT. A study on structural and diffusion properties of porcine stratum corneum based on very small angle neutron scattering data. Pharm Res. 2000;17:1085–1091.PubMedCrossRefGoogle Scholar
  13. 13.
    Christophers E, Kligman AM. Visualization of the cell layers of the stratum corneum. J Invest Dermatol. 1964;42:407–409.PubMedGoogle Scholar
  14. 14.
    Blair C. Morphology and thickness of the human stratum corneum. Brit J Dermatol. 1968;80:430–436.CrossRefGoogle Scholar
  15. 15.
    MacKenzie JC. Ordered structure of the stratum corneum of mammalian skin. Nature. 1969;222:881–882.PubMedCrossRefGoogle Scholar
  16. 16.
    Christophers E. Cellular architecture of the stratum corneum. J Invest Dermatol. 1971;56:165–169.PubMedCrossRefGoogle Scholar
  17. 17.
    Mershon MM. A physicochemical approach to the characterization of stratum corneum. In: Gould RF. ed. Apphed Chemistry at Protein Interfaces. Washington, D.C.: American Chemical Society, 1975:74–124.Google Scholar
  18. 18.
    Menton DN. A ininimum-surface mechanism to account for the organization of cells into columns in the mammalian epidermis. Am J Anat 1976;145:1–22.PubMedCrossRefGoogle Scholar
  19. 19.
    MacKenzie IC, Zimmerman K, Peterson L. The pattern of cellular organization of human epidermis. J Invest Dermatol 1981;76:459–461.PubMedCrossRefGoogle Scholar
  20. 20.
    Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin—relationship to the anatomical location on the body, age, sex and physical parameters. Arch Dermatol Res. 1999;291:555–559.PubMedCrossRefGoogle Scholar
  21. 21.
    Robbins CR, Fernee KM. Some observations on the swelling of human stratum corneum. J Soc Cosmet Chem. 1983;34:21–34.Google Scholar
  22. 22.
    Montagna W, Parakkal PF. The Structure and Function of Skin. New York, NY: Academic Press, 1974.Google Scholar
  23. 23.
    Mershon MM Barrier surfaces of skin In: Baier RE, ed. Applied Chemistry at Protein Interfaces Washington, DC: American Chemical Society, 1975.Google Scholar
  24. 24.
    Elias PM, Goerke J, Friend DS. Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol 1977;69:535–546.PubMedCrossRefGoogle Scholar
  25. 25.
    Sheehan DC, Hrapchak BB Theory and Practice of Histotechnology. St Louis, MO: CV Mosby; 1980.Google Scholar
  26. 26.
    Fowler SD, Greenspan P. Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. J Histochem Cytochem 1985;33:833–836.PubMedCrossRefGoogle Scholar
  27. 27.
    Paddock SW. An introduction to confocal imaging In: Paddock SW, ed. Confocal Microscopy Methods and Protocols. Towowa, NJ: Humana Press, 1999;12.Google Scholar
  28. 28.
    Greenspan P, Fowler SD. Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res. 1985;26:781–789.PubMedGoogle Scholar
  29. 29.
    Greenspan P, Mayer EP, Fowler SD. Nile red a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100:965–973.PubMedCrossRefGoogle Scholar
  30. 30.
    Edmonds J, Johnson EL. Matching, Euler tours and the Chinese postman. Math Programming. 1973;5:88–124.CrossRefGoogle Scholar
  31. 31.
    Anderson RL, Cassidy JM, Hansen JR, Yellin W. Hydration of stratum corneum. Biopolymers. 1973;12:2789–2802.PubMedCrossRefGoogle Scholar
  32. 32.
    Blank IH, Moloney J, Emslie AG, Simon I, Apt C. The diffusion of water across the stratum corneum as a function of its water content. J Invest Dermatol. 1984;82:183–194.CrossRefGoogle Scholar
  33. 33.
    Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural investigations of human stratum corneum by small angle X-ray scattering. J Invest Dermatol. 1991;97:1005–1012.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2001

Authors and Affiliations

  • Priva S. Talreja
    • 1
  • Gerald B. Kasting
    • 1
    Email author
  • Nancy K. Kleene
    • 2
  • William L. Pickens
    • 3
  • Tsuo-Feng Wang
    • 4
  1. 1.College of PharmacyUniversity of Cincinnati Medical CenterCincinnati
  2. 2.Department of Cell Biology, Neurobiology and AnatomyUniversity of CincinnatiCincinnatiUSA
  3. 3.Skin Sciences InstituteChildren’s Hospital Medical CenterUSA
  4. 4.Department of Chemical EngineeringState University of New York at BuffaloBuffaloUSA

Personalised recommendations