Skip to main content
Log in

Characterization of a cyclosporine solid dispersion for inhalation

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

For lung transplant patients, a respirable, inulin-based solid dispersion containing cyclosporine A (CsA) has been developed. The solid dispersions were prepared by spray freezedrying. The solid dispersion was characterized by water vapor uptake, specific surface area analysis, and particle size analysis. Furthermore, the mode of inclusion of CsA in the dispersion was investigated with Fourier transform infrared spectroscopy. Finally, the dissolution behavior was determined and the aerosol that was formed by the powder was characterized. The powder had large specific surface areas (∼160 m2). The water vapor uptake was dependent linearly on the drug load. The type of solid dispersion was a combination of a solid solution and solid suspension. At a 10% drug load, 55% of the CsA in the powder was in the form of a solid solution and 45% as solid suspension. At 50% drug load, the powder contained 90% of CsA as solid suspension. The powder showed excellent dispersion characteristics as shown by the high emitted fraction (95%), respirable fraction (75%), and fine-particle fraction (50%). The solid dispersions consisted of relatively large (x50≈7 μm), but low-density particles (ρ≈0.2 g/cm3). The solid dispersions dissolved faster than the physical mixture, and inulin dissolved faster than CsA. The spray freeze-drying with inulin increased the specific surface area and wettability of CsA. In conclusion, the developed powder seems suitable for inhalation in the local treatment of lung transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corcoran TE, Smaldone GC, Dauber JH, et al. Preservation of posttransplant lung function with aerosol cyclosporin.Eur Respir J. 2004;23:378–383.

    Article  PubMed  CAS  Google Scholar 

  2. Iacono AT, Smaldone GC, Keenan RJ, et al. Dose-related reserval of acute lung rejection by aerosolized cyclosporine.Am J Respir Crit Care Med. 1997;155:1690–1698.

    PubMed  CAS  Google Scholar 

  3. Iacono AT, Johnson BA, Grgurich WF, et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients.N Engl J Med. 2006;354:141–150.

    Article  PubMed  Google Scholar 

  4. Burckart GJ, Smaldone GC, Eldon MA, et al. Lung deposition and pharmacokinetics of cyclosporine after aerosolization in lung transplant patients.Pharm Res. 2003;20:252–256.

    Article  CAS  Google Scholar 

  5. Le Brun PPH, Vinks AA, Touw DJ, et al. Can tobramycin inhalation be improved with a jet nebulizer?Ther Drug Monit. 1999;21:618–624.

    Article  PubMed  Google Scholar 

  6. O'Callaghan C, Barry PW. The science of nebulised drug delivery.Thorax. 1997;52:S31-S44.

    Article  PubMed  Google Scholar 

  7. Touw DJ, Jacobs FA, Brimicombe RW, Heijerman HG, Bakker W, Briemer DD. Pharmacokinetics of aerosolized tobramycin in adult patients with cystic fibrosis.Antimicrob Agents Chemother. 1997;41:184–187.

    PubMed  CAS  Google Scholar 

  8. Molpeceres J, Guzman M, Bustamante P, del Rosario Aberturas M. Exothermic-endothermic heat of solution shift of cyclosporin A related to poloxamer 188 behavior in aqueous solutions.Int J Pharm. 1996;130:75–81.

    Article  CAS  Google Scholar 

  9. Van Drooge DJ, Hinrichs WLJ, Frijlink HW. Incorporation of lipophilic drugs in sugar glasses by lyophilization using a mixture of water and tertiary butyl alcohol as solvent.J Pharm Sci. 2004;93:713–725.

    Article  PubMed  CAS  Google Scholar 

  10. Le Brun PPH, de Boer AH, Mannes GP, et al. Dry pow der inhalation of antibiotics in cystic fibrosis therapy: part 2. Inhalation of a novel colistin dry powder formulation: a feasibility study in healthy volunteers and patients.Eur J Pharm Biopharm. 2002;54:25–32.

    Article  PubMed  Google Scholar 

  11. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions.Eur J Pharm Biopharm. 2000;50:47–60.

    Article  PubMed  CAS  Google Scholar 

  12. Sethia S, Squillante E. Solid dispersions: revival with greater possibilities and applications in oral drug delivery.Crit Rev Ther Drug Carrier Syst. 2003;20:215–247.

    Article  PubMed  CAS  Google Scholar 

  13. Kaushal AM, Gupta P, Bansal AK. Amorphous drug delivery systems: molecular aspects, design, and performance.Crit Rev Ther Drug Carrier Syst. 2004;21:133–193.

    Article  PubMed  CAS  Google Scholar 

  14. Van Drooge DJ, Hinrichs WLJ, Frijlink HW. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions.J Control Release. 2004;97:441–452.

    PubMed  Google Scholar 

  15. Ericsson CH, Svartengren K, Svartengren M, et al. Repeatability of airway deposition and tracheobrounchial clearance rate over three days in chronic bronchitis.Eur Respir J. 1995;8:1886–1893.

    Article  PubMed  CAS  Google Scholar 

  16. Moller W, Haussinger K, Winkler-Heil R, et al. Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects.J Appl Physiol. 2004;97:2200–2206.

    Article  PubMed  Google Scholar 

  17. Johnson KA. Preparation of peptide and protein powders for inhalation.Adv Drug Deliv Rev. 1997;26:3–15.

    Article  PubMed  CAS  Google Scholar 

  18. Frijlink HW, De Boer AH. Dry powder inhalers for pulmonary drug delivery.Expert Opin Drug Deliv. 2004;1:67–86.

    Article  PubMed  CAS  Google Scholar 

  19. Maa YF, Nguyen PA, Sweeney T, Shire SJ, Hsu CC. Protein inhalation powder: spray drying vs spray freeze drying.Pharm Res. 1999;16:249–254.

    Article  PubMed  CAS  Google Scholar 

  20. van Drooge DJ, Hinrichs WL, Dickhoff BH, et al. Spray freeze drying to produce a stable Dalta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation.Eur J Pharm Sci. 2005;26:231–240.

    Article  PubMed  CAS  Google Scholar 

  21. Zijlstra GS, Hinrichs WLJ, de Boer AH, Frijlink HW. The role of particle engineering in relation to formulation and de-agglomeration principle in the development of a dry powder formulation for inhalation of cetrorelix.Eur J Pharm Sci. 2004;23:139–149.

    Article  PubMed  CAS  Google Scholar 

  22. van Drooge DJ, Hinrichs WL, Visser MR, Frijlink HW. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.Int J Pharm. 2006;310:220–229.

    Article  PubMed  CAS  Google Scholar 

  23. Salm P, Norris RL, Taylor PJ, Davis DE, Ravenscroft PJ. A reliable high-performance liquid chromatography assay for high-throughput routine cyclosporin A monitoring in whole blood.Ther Drug Monit. 1993;15:65–69.

    Article  PubMed  CAS  Google Scholar 

  24. Scott TA, Jr Melvin EH. Determination of dextran with anthrone.Anal Chem. 1953;25:1656–1661.

    Article  CAS  Google Scholar 

  25. Hinrichs WLJ, Prinsen MG, Frijlink HW. Inulin glasses for the stabilization of therapeutic proteins.Int J Pharm. 2001:215:163–174.

    Article  PubMed  CAS  Google Scholar 

  26. Dong A, Huang P, Caughey WS. Protein secondary structures in water from second-derivative amide I infrared spectra.Biochemistry. 1990;29:3303–3308.

    Article  PubMed  CAS  Google Scholar 

  27. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures.Anal Chem. 1964;36:1627–1639.

    Article  CAS  Google Scholar 

  28. Kendrick BS, Dong A, Allison SD, Manning MC, Carpenter JF. Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states.J Pharm Sci. 1996;85:155–158.

    Article  PubMed  CAS  Google Scholar 

  29. van de Weert M, Haris PI, Hennink WE, Crommelin DJ. Fourier transform infrared spectrom etric analysis of protein conformation: effect of sampling method and stress factors.Anal Biochem. 2001;297:160–169.

    Article  PubMed  CAS  Google Scholar 

  30. van de Weert M, Haris PI, Hennink WE, Crommelin DJ. Fourier transform in frared spectrom etric analysis of protein conformation: effect of sampling method and stress factors.Anal Biochem. 2001;297:160–169.

    Article  PubMed  CAS  Google Scholar 

  31. Ziegler J, Wachtel H. Comparison of cascade impaction and laser diffraction for particle distribution measurements.Aerosol Med. 2005;18:311–324.

    Article  Google Scholar 

  32. de Boer AH, Hagedoorn P, Gjaltema D, Geode J, Frijlink HW. Air classifier technology (ACT) in dry powder inhalation: Part 1. Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures.Int J Pharm. 2003;260:187–200.

    Article  PubMed  CAS  Google Scholar 

  33. Costantino HR, Firouzabadian L, Wu C, et al. Protein spray freeze drying. 2. Effect of formulation variables on particle size and stability.J Pharm Sci. 2002;91:388–395.

    Article  PubMed  CAS  Google Scholar 

  34. Rogers TL, Johnston KP, Williams RO, 3rd. Physical stability of micronized powders produced by spray-freezing into liquid (SFL) to enhance the dissolution of an insoluble drug.Pharm Dev Technol. 2003;8:187–197.

    Article  PubMed  CAS  Google Scholar 

  35. Molpeceres J, Aberturas MR, Guzman M. Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization.J Microencapsul. 2000;17:599–614.

    Article  PubMed  CAS  Google Scholar 

  36. Lee EJ, Lee SW, Choi HG, Kim CK. Bioavailability of cyclosporin A dispersed in sodium lauryl sulfate-dextrin based solid microspheres.Int J Pharm. 2001;218:125–131.

    Article  PubMed  CAS  Google Scholar 

  37. Liu C, Wu J, Shi B, Zhang Y, Gao T, Pei Y. Enhancing the bioavailability of cyclosporine a using solid dispersion containing polyoxyethylene (40) stearate.Drug Dev Ind Pharm. 2006;32:115–123.

    Article  PubMed  CAS  Google Scholar 

  38. Stevenson CL, Tan MM, Lechuga-Ballesteros D. Secondary structure of cyclosporine in a spray-dried liquid crystal by FTIR.J Pharm Sci. 2003;92:1832–1843.

    Article  PubMed  CAS  Google Scholar 

  39. Bertacche V, Pini E, Stradi R, Stratta F. Quantitative determination of amorphous cyclosporine in crystalline cyclosporine samples by Fourier transform infrared spectroscopy.J Pharm Sci. 2006;95:159–166.

    Article  PubMed  CAS  Google Scholar 

  40. European Pharmacopoeia(2.9.18) Procedure for powder inhalers Strasbourg: Council of Europe, 2005; 249–250.

  41. Vanbever R, Mintzes JD, Wang J, et al. Formulation and physical characterization of large porous particles for inhalation.Pharm Res. 1999;16:1735–1742.

    Article  PubMed  CAS  Google Scholar 

  42. Dunbar C, Scheuch G, Sommerer K, DeLong M, Verma A, Batycky R. In vitro and in vivo dose delivery characteristics of large porous particles for inhalation.Int J Pharm. 2002:245:179–189.

    Article  PubMed  CAS  Google Scholar 

  43. Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles.J Appl Physiol. 1998;85:379–385.

    PubMed  CAS  Google Scholar 

  44. Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery.Science. 1997;276:1868–1871.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit S. Zijlstra.

Additional information

Published: June 15, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zijlstra, G.S., Rijkeboer, M., van Drooge, D.J. et al. Characterization of a cyclosporine solid dispersion for inhalation. AAPS J 9, 21 (2007). https://doi.org/10.1208/aapsj0902021

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj0902021

Keywords

Navigation