The AAPS Journal

, Volume 9, Issue 2, pp E128–E147 | Cite as

Targeted pharmaceutical nanocarriers for cancer therapy and imaging

  • Vladimir P. Torchilin


The use of various pharmaceutical nanocarriers has become one of the most important areas of nanomedicine. Ideally, such carriers should be specifically delivered (targeted) to the pathological area to provide the maximum therapeutic efficacy. Among the many potential targets for such nanocarriers, tumors have been most often investigated. This review attempts to summarize currently available information regarding targeted pharmaceutical nanocarriers for cancer therapy and imaging. Certain issues related to some popular pharmaceutical nanocarriers, such as liposomes and polymeric micelles, are addressed, as are different ways to target tumors via specific ligands and via the stimuli sensitivity of the carriers. The importance of intracellular targeting of drug- and DNA-loaded pharmaceutical nanocarriers is specifically discussed, including intracellular delivery with cell-penetrating peptides.


Nanoparticles nanocariers targeted delivery cancer therapy imaging 


  1. 1.
    Torchilin VP, ed.Nanoparticulates as Pharmaceutical Carriers. London, UK: Imperial College Press; 2006.Google Scholar
  2. 2.
    Müller RH.Colloidal carriers for controlled drug delivery and targeting: modification, characterization, and in vivo distribution. Stuttgart, Germany, and Boca Raton, FL: Wissenschaftliche Verlagsgesellschaft and CRC Press; 1991.Google Scholar
  3. 3.
    Cohen S, Bernstein H, eds.Microparticulate Systems for the Delivery of Proteins and Vaccines. New York, NY; Marcel Dekker, 1996.Google Scholar
  4. 4.
    Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres.Science. 1994; 263: 1600–1603.PubMedCrossRefGoogle Scholar
  5. 5.
    Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy.Adv Drug Deliv Rev. 2001; 46: 169–185.PubMedCrossRefGoogle Scholar
  6. 6.
    Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS.J Control Release. 2001; 74: 47–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: moledular size dependence and cutoff size.Cancer Res. 1995; 55: 3752–3756.PubMedGoogle Scholar
  8. 8.
    Lasic DD, Martin FJ.Stealth Liposomes. Boca Raton, FL: CRC Press; 1995.Google Scholar
  9. 9.
    Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating?.Adv Drug Deliv Rev. 1995; 16: 141–155.CrossRefGoogle Scholar
  10. 10.
    Lukyanov AN, Hartner WC, Torchilin VP. Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits.J Control Release. 2004; 94: 187–193.PubMedCrossRefGoogle Scholar
  11. 11.
    Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review.J Control Release. 2000; 65: 271–284.PubMedCrossRefGoogle Scholar
  12. 12.
    Torchilin VP. Polymer-coated long-circulating microparticulate pharmaceuticals.J Microencapsul. 1998; 15: 1–19.PubMedCrossRefGoogle Scholar
  13. 13.
    O'Shaughnessy JA. Pegylated liposomal doxorubicin in the treatment of breast cancer.Clin Breast Cancer. 2003; 4: 318–328.PubMedGoogle Scholar
  14. 14.
    Symon Z, Peyser A, Tzemach D, et al. Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes.Cancer. 1999; 86: 72–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Perez AT, Domenech GH, Frankel C, Vogel CL. Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc., experience.Cancer Invest. 2002; 20: 22–29.PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidinger M, Wenzel C, Locker GJ, et al. Pilot study with pegylated liposomal doxorubicin for advanced or unresectable hepatocellular carcinoma.Br J Cancer. 2001; 85: 1850–1852.PubMedCrossRefGoogle Scholar
  17. 17.
    Wollina U, Dummer R, Brockmeyer NH, et al. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma.Cancer. 2003; 98: 993–1001.PubMedCrossRefGoogle Scholar
  18. 18.
    Skubitz KM. Phase II trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma.Cancer Invest. 2003; 21: 167–176.PubMedCrossRefGoogle Scholar
  19. 19.
    Harrington KJ, Lewanski C, Northcote AD, et al. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck.Eur J Cancer. 2001; 37: 2015–2022.PubMedCrossRefGoogle Scholar
  20. 20.
    Johnston SR, Gore ME. Caelyx: phase II studies in ovarian cancer.Eur J Cancer. 2001; 37: 8–14.CrossRefGoogle Scholar
  21. 21.
    Seiden MV, Muggia F, Astrow A, et al. A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer.Gynecol Oncol. 2004; 93: 229–232.PubMedCrossRefGoogle Scholar
  22. 22.
    Lasic DD.Liposomes: From Physics to Applications. New York, NY: Elsevier; 1993.Google Scholar
  23. 23.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers.Nat Rev Drug Discov. 2005; 4: 145–160.PubMedCrossRefGoogle Scholar
  24. 24.
    Torchilin VP. Liposomes as targetable drug carriers.Crit Rev Ther Drug Carrier Syst. 1985; 2: 65–115.PubMedGoogle Scholar
  25. 25.
    Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors.Crit Rev Ther Drug Carrier Syst. 1987; 3: 123–193.PubMedGoogle Scholar
  26. 26.
    Torchilin VP, Narula J, Halpern E, Khaw BA. Poly(ethylene glycol)-coated anti-cardiac myosin immunoliposomes: factors influencing targeted accumulation in the infarcted myocardium.Biochim Biophys Acta. 1996; 1279: 75–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Torchilin VP, Levchenko TS, Lukyanov AN, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups.Biochim Biophys Acta. 2001; 1511: 397–411.PubMedCrossRefGoogle Scholar
  28. 28.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv Drug Deliv Rev. 2001; 46: 3–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Fernandez AM, Van Derpoorten K, Dasnois L, et al. N-Succinyl-(beta-alanyl-L-leucyl-L-alanyl-L-leucyl)doxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity.J Med Chem. 2001; 44: 3750–3753.PubMedCrossRefGoogle Scholar
  30. 30.
    Yalkowsky SH, ed.Techniques of Solubilization of Drugs. New York, NY: M Dekker, 1981.Google Scholar
  31. 31.
    Shabner BA, Collings JM, eds.Cancer Chemotherapy: Principles and Practice. Philadelphia, PA: JB Lippincott; 1990.Google Scholar
  32. 32.
    Yokogawa K, Nakashima E, Ishizaki J, et al. Relationships in the structure-tissue distribution of basic drugs in the rabbit.Pharm Res. 1990; 7: 691–696.PubMedCrossRefGoogle Scholar
  33. 33.
    Hageluken A, Grunbaum L, Nurnberg B, et al. Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins.Biochem Pharmacol. 1994; 47: 1789–1795.PubMedCrossRefGoogle Scholar
  34. 34.
    Torchilin VP, Weissig V. Polymeric micelles for delivery of poorly soluble drugs. In: Park K, Mrsny RJ, eds.Controlled Drug Delivery: Designing Technologies for the Future. Washington, DC: American Chemical Society; 2000; 297–313.Google Scholar
  35. 35.
    Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles.Adv Drug Deliv Rev. 1995; 16: 295–309.CrossRefGoogle Scholar
  36. 36.
    Cammas S, Suzuki K, Sone C, et al. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers.J Control Release. 1997; 48: 157–164.CrossRefGoogle Scholar
  37. 37.
    Le Garrec D, Taillefer J, Van Lier JE, et al. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model.J Drug Target. 2002; 10: 429–437.PubMedCrossRefGoogle Scholar
  38. 38.
    Meyer O, Papahadjopoulos D, Leroux JC. Copolymers of N-isopropylacrylamide can trigger pH sensitivity to stable liposomes.FEBS Lett. 1998; 421: 61–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Chung JE, Yokoyama M, Yamato M, et al. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate).J Control Release. 1999; 62: 115–127.PubMedCrossRefGoogle Scholar
  40. 40.
    Stroh M, Zimmer JP, Duda DG, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo.Nat Med. 2005; 11: 678–682.PubMedCrossRefGoogle Scholar
  41. 41.
    Trubetskoy VS, Torchilin VP. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents.Adv Drug Deliv Rev. 1995; 16: 311–320.CrossRefGoogle Scholar
  42. 42.
    Torchilin VP. How do polymers prolong circulation times of liposomes?J Liposome Res. 1996; 9: 99–116.CrossRefGoogle Scholar
  43. 43.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.Adv Enzyme Regul. 2001; 41: 189–207.PubMedCrossRefGoogle Scholar
  44. 44.
    Gabizon AA. Liposome circulation time and tumor targeting: implications for cancer chemotherapy.Adv Drug Deliv Rev. 1995; 16: 285–294.CrossRefGoogle Scholar
  45. 45.
    Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes.FEBS Lett. 1990; 268: 235–237.PubMedCrossRefGoogle Scholar
  46. 46.
    Maruyama K, Yuda T, Okamoto A, et al. Effect of molecular weight in amphipathic polyethyleneglycol on prolonging the circulation time of large unilamellar liposomes.Chem Pharm Bull (Tokyo). 1991; 39: 1620–1622.Google Scholar
  47. 47.
    Senior J, Delgado C, Fisher D, et al. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles.Biochim Biophys Acta. 1991; 1062: 77–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Allen TM, Hansen C, Martin F, et al. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo.Biochim Biophys Acta. 1991; 1066: 29–36.PubMedCrossRefGoogle Scholar
  49. 49.
    Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy.Proc Natl Acad Sci USA. 1991; 88: 11460–11464.PubMedCrossRefGoogle Scholar
  50. 50.
    Napper DH.Polymeric Stabilization of Colloidal Dispersions. New York, NY: Academic Press, 1983.Google Scholar
  51. 51.
    Woodle MC. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation.Chem Phys Lipids. 1993; 64: 249–262.PubMedCrossRefGoogle Scholar
  52. 52.
    Allen TM. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system.Adv Drug Deliv Rev. 1994; 13: 285–309.CrossRefGoogle Scholar
  53. 53.
    Chonn A, Semple SC, Cullis PR. Separation of large unilamellar liposomes from blood components by a spin column procedure: towards identifying plasma proteins which mediate liposome clearance in vivo.Biochim Biophys Acta. 1991; 1070: 215–222.PubMedCrossRefGoogle Scholar
  54. 54.
    Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes.J Biol Chem. 1992; 267: 18759–18765.PubMedGoogle Scholar
  55. 55.
    Lasic DD, Martin FJ, Gabizon A, et al. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times.Biochim Biophys Acta. 1991; 1070: 187–192.PubMedCrossRefGoogle Scholar
  56. 56.
    Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearance in vivo.Biochim Biophys Acta. 1992; 1103: 94–100.PubMedCrossRefGoogle Scholar
  57. 57.
    Needham D, McIntosh TJ, Lasic DD. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes.Biochim Biophys Acta. 1992; 1108: 40–48.PubMedCrossRefGoogle Scholar
  58. 58.
    Torchilin VP, Omelyanenko VG, Papisov MI, et al. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity.Biochim Biophys Acta. 1994; 1195: 11–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Zalipsky S. Chemistry of polyethylene glycol conjugates with biologically active molecules.Adv Drug Deliv Rev. 1995; 16: 157–182.CrossRefGoogle Scholar
  60. 60.
    Pang SNJ. Final report on the safety assessment of polyethylene glycols (PEGs)-6,-8,-32,-75,-150,-14M,-20M.J Am Coll Toxicol. 1993; 12: 429–457.Google Scholar
  61. 61.
    Powell GM. Polyethylene glycol. In: Davidson RL, ed.Handbook of Water-Soluble Gums and Resins. New York, NY: McGraw-Hill; 1980: 1–31.Google Scholar
  62. 62.
    Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice.J Pharm Sci. 1994; 83: 601–606.PubMedCrossRefGoogle Scholar
  63. 63.
    Veronese FM. Peptide and protein PEGylation: a review of problems and solutions.Biomaterials. 2001; 22: 405–417.PubMedCrossRefGoogle Scholar
  64. 64.
    Torchilin VP. Strategies and means for drug targeting: an overview. In: Muzykantov VR, Torchilin VP, eds.Biomedical Aspects of Drug Targeting. Boston, MA: Kluwer Academic; 2002: 3–26.Google Scholar
  65. 65.
    Krause HJ, Schwartz A, Rohdewald P. Polylactic acid nanoparticles, a colloidal drug delivery system for lipophilic drugs.Int J Pharm. 1985; 27: 145–155.CrossRefGoogle Scholar
  66. 66.
    Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres.Adv Drug Deliv Rev. 1995; 16: 215–233.CrossRefGoogle Scholar
  67. 67.
    Harper GR, Davies MC, Davis SS, et al. Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro.Biomaterials. 1991; 12: 695–700.PubMedCrossRefGoogle Scholar
  68. 68.
    Muller M, Voros J, Csues G, et al. Surface modification of PLGA microspheres.J Biomed Mater Res A. 2003; 66A: 55–61.CrossRefGoogle Scholar
  69. 69.
    Peracchia MT, Fattal E, Desmaele D, et al. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting.J Control Release. 1999; 60: 121–128.PubMedCrossRefGoogle Scholar
  70. 70.
    Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery.Pharm Res. 2001; 18: 1157–1166.PubMedCrossRefGoogle Scholar
  71. 71.
    Bhadra D, Bhadra S, Jain S, Jain NKA. PEGylated dendritic nanoparticulate carrier of fluorouracil.Int J Pharm. 2003; 257: 111–124.PubMedCrossRefGoogle Scholar
  72. 72.
    Gabizon A, Papahadjopoulos D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors.Proc Natl Acad Sci USA. 1988; 85: 6949–6953.PubMedCrossRefGoogle Scholar
  73. 73.
    Huang SK, Stauffer PR, Hong K, et al. Liposomes and hyperthermia in mice: increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes.Cancer Res. 1994; 54: 2186–2191.PubMedGoogle Scholar
  74. 74.
    Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes.Cancer Res. 1994; 54: 987–992.PubMedGoogle Scholar
  75. 75.
    Boman NL, Masin D, Mayer LD, et al. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors.Cancer Res. 1994; 54: 2830–2833.PubMedGoogle Scholar
  76. 76.
    Rose PG. Pegylated liposomal doxorubicin: optimizing the dosing schedule in avarian cancer.Oncologist. 2005; 10: 205–214.PubMedCrossRefGoogle Scholar
  77. 77.
    Ewer MS, Martin FJ, Henderson C, et al. Cardiac safety of liposomal anthracyclines.Semin Oncol. 2004; 31: 161–181.PubMedCrossRefGoogle Scholar
  78. 78.
    Allen TM, Hansen CB, de Menenez DEL. Pharmacokinetics of long-circulating liposomes.Adv Drug Deliv Rev. 1995; 16: 267–284.CrossRefGoogle Scholar
  79. 79.
    Hwang KJ. Liposome pharamacokinetics. In: Ostro MJ, ed.Liposomes: From Biophysics to Therapeutics. New York, NY: Dekker, 1987: 109–156.Google Scholar
  80. 80.
    Blume G, Cevc G, Crommelin MD, et al. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times.Biochim Biophys Acta. 1993; 1149: 180–184.PubMedCrossRefGoogle Scholar
  81. 81.
    Zalipsky S, Gittelman J, Mullah N. Biologically active ligand-bearing polymer-grafted liposomes. In: Gregoriadis G, ed.Targeting of Drugs 6: Strategies for Stealth Therapeutic Systems. New York, NY: Plenum Press; 1998: 131–139.Google Scholar
  82. 82.
    Torchilin VP, Rammohan R, Weissig V. PEG-Immunoliposomes: Attachment of Monoclonal Antibody to Distal Ends of PEG Chains Via p-Nnitrophenylcarbonyl Groups. Paper presented at: 27th International Symposium on Controlled Release of Bioactive Materials.; July 7–13. 2000; Paris, France. 2000Google Scholar
  83. 83.
    Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs.Proc Natl Acad Sci USA. 2003; 100: 6039–6044.PubMedCrossRefGoogle Scholar
  84. 84.
    Sapra P, Allen TM. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs.Cancer Res. 2002; 62: 7190–7194.PubMedGoogle Scholar
  85. 85.
    Park JW, Kirpotin DB, Hong K, et al. Tumor targeting using anti-her2 immunoliposomes.J Control Release. 2001; 74: 95–113.PubMedCrossRefGoogle Scholar
  86. 86.
    Kamps JA, Koning GA, Velinova MJ, et al. Uptake of long-circulating immunoliposomes, directed against colon adenocarcinoma cells, by liver metastases of colon cancer.J Drug Target. 2000; 8: 235–245.PubMedCrossRefGoogle Scholar
  87. 87.
    Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumortargeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody.J Control Release. 2004; 100: 135–144.PubMedCrossRefGoogle Scholar
  88. 88.
    Raffaghello L, Pagnan G, Pastorino F, et al. Immunoliposomal fenretinide: a novel antitumoral drug for human neuroblastoma.Cancer Lett. 2003; 197: 151–155.PubMedCrossRefGoogle Scholar
  89. 89.
    Marty C, Schwendener RA. Cytotoxic tumor targeting with scFv antibody-modified liposomes.Methods Mol Med. 2005; 109: 389–402.PubMedGoogle Scholar
  90. 90.
    Mastrobattista E, Koning GA, van Bloois L, et al. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins.J Biol Chem. 2002; 277: 27135–27143.PubMedCrossRefGoogle Scholar
  91. 91.
    Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy.Adv Drug Deliv Rev. 2004; 56: 1649–1659.PubMedCrossRefGoogle Scholar
  92. 92.
    Olivier JC, Huertas R, Lee HJ, et al. Synthesis of pegylated immunonanoparticles.Pharm Res. 2002; 19: 1137–1143.PubMedCrossRefGoogle Scholar
  93. 93.
    Kato K, Itoh C, Yosukouchi T, Nagamune T. Rapid protein anchoring into the membranes of mammalian cells using oleyl chain and poly(ethylene glycol) derivatives.Biotechnol Prog. 2004; 20: 897–904.PubMedCrossRefGoogle Scholar
  94. 94.
    Hatakeyama H, Akita H, Maruyama K, et al. Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo.Int J Pharm. 2004; 281: 25–33.PubMedCrossRefGoogle Scholar
  95. 95.
    Ishida O, Maruyama K, Tanahashi H, et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo.Pharm Res. 2001; 18: 1042–1048.PubMedCrossRefGoogle Scholar
  96. 96.
    Derycke AS, De Witte PA. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes.Int J Oncol. 2002; 20: 181–187.PubMedGoogle Scholar
  97. 97.
    Gijsens A, Derycke A, Missiaen L, et al. Targeting of the photocytotoxic compound AIPcS4 to Hela cells by transferrin conjugated PEG-liposomes.Int J Cancer. 2002; 101: 78–85.PubMedCrossRefGoogle Scholar
  98. 98.
    Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer.Int J Cancer. 2002; 99: 130–137.PubMedCrossRefGoogle Scholar
  99. 99.
    Joshee N, Bastola DR, Cheng PW. Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking.Hum Gene Ther. 2002; 13: 1991–2004.PubMedCrossRefGoogle Scholar
  100. 100.
    Xu L, Huang CC, Huang W, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes.Mol Cancer Ther. 2002; 1: 337–346.PubMedGoogle Scholar
  101. 101.
    Tan PH, Manunta M, Ardjomand N, et al. Antibody targeted gene transfer to endothelium.J Gene Med. 2003; 5: 311–323.PubMedCrossRefGoogle Scholar
  102. 102.
    Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes.Proc Natl Acad Sci USA. 1996; 93: 14164–14169.PubMedCrossRefGoogle Scholar
  103. 103.
    Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis.Proc Natl Acad Sci USA. 1991; 88: 5572–5576.PubMedCrossRefGoogle Scholar
  104. 104.
    Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis.J Biol Chem. 1994; 269: 3198–3204.PubMedGoogle Scholar
  105. 105.
    Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents.Adv Drug Deliv Rev. 2002; 54: 675–693.PubMedCrossRefGoogle Scholar
  106. 106.
    Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates.Adv Drug Deliv Rev. 2004; 56: 1177–1192.PubMedCrossRefGoogle Scholar
  107. 107.
    Ni S, Stephenson SM, Lee RJ. Folate receptor targeted delivery of liposomal daunorubicin into tumor cells.Anticancer Res. 2002; 22: 2131–2135.PubMedGoogle Scholar
  108. 108.
    Pan XQ, Wang H, Lee RJ. Antitumor activity of folate receptortargeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model.Pharm Res. 2003; 20: 417–422.PubMedCrossRefGoogle Scholar
  109. 109.
    Stephenson SM, Yang W, Stevens PJ, et al. Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy.Anticancer Res. 2003; 23: 3341–3345.PubMedGoogle Scholar
  110. 110.
    Lu Y, Low PS. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors.Cancer Immunol Iummunother. 2002; 51: 153–162.CrossRefGoogle Scholar
  111. 111.
    Stella B, Arpicco S, Peracchia MT, et al. Design of folic acid-conjugated nanoparticles for drug targeting.J Pharm Sci. 2000; 89: 1452–1464.PubMedCrossRefGoogle Scholar
  112. 112.
    Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs.Biomaterials. 2005; 26: 1053–1061.PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials. 2002; 23: 1553–1561.PubMedCrossRefGoogle Scholar
  114. 114.
    Choi H, Choi SR, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery.Acad Radiol. 2004; 11: 996–1004.PubMedCrossRefGoogle Scholar
  115. 115.
    Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems.J Control Release. 2001;73:137–172.PubMedCrossRefGoogle Scholar
  116. 116.
    Nagasaki Y, Yasugi K, Yamamoto Y, et al. Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules.Biomacromolecules. 2001;2:1067–1070.PubMedCrossRefGoogle Scholar
  117. 117.
    Vinogradov S, Batrakova E, Li S, Kabanov A. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells.Bioconjugate Chem. 1999;10:851–860.CrossRefGoogle Scholar
  118. 118.
    Leamon CP, Weigl D, Hendren RW. Folate copolymer-mediated transfection of cultured cells.Bioconjugate Chem. 1999;10:947–957.CrossRefGoogle Scholar
  119. 119.
    Jule E, Nagasaki Y, Kataoka K. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.Bioconjug Chem. 2003;14:177–186.PubMedCrossRefGoogle Scholar
  120. 120.
    Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery.Gene Ther. 1999;6:595–605.PubMedCrossRefGoogle Scholar
  121. 121.
    Dash PR, Read ML, Fisher KD, et al. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin.J Biol Chem. 2000;275:3793–3802.PubMedCrossRefGoogle Scholar
  122. 122.
    Leamon CP, Low PS. Folate-mediated targeting: from diagnostics to drug and gene delivery.Drug Discov Today. 2001;6:44–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting.J Control Release. 2003;91:103–113.PubMedCrossRefGoogle Scholar
  124. 124.
    Drummond DC, Hong K, Park JW, et al. Liposome targeting to tumors using vitamin and growth factor receptors.Vitam Horm. 2000;60:285–332.PubMedCrossRefGoogle Scholar
  125. 125.
    Dagar S, Krishnadas A, Rubinstein I, et al. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies.J Control Release. 2003;91:123–133.PubMedCrossRefGoogle Scholar
  126. 126.
    Asai T, Shimizu K, Kondo M, et al. Anti-neovascular therapy by liposomal DPP-CNDAC targeted to angiogenic vessels.FEBS Lett. 2002;520:167–170.PubMedCrossRefGoogle Scholar
  127. 127.
    Mamot C, Drummond DC, Greiser U, et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells.Cancer Res. 2003;63:3154–3161.PubMedGoogle Scholar
  128. 128.
    Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models.Int J Cancer. 2004;108:780–789.PubMedCrossRefGoogle Scholar
  129. 129.
    Matsuda I, Konno H, Tanaka T, Nakamura S. Antimetastatic effect of hepatotropic liposomal adriamycin on human metastatic liver tumors.Surg Today. 2001;31:414–420.PubMedCrossRefGoogle Scholar
  130. 130.
    Lee CM, Tanaka T, Murai T, et al. Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiency suppress the local growth and liver metastasis of tumor cells in vivo.Cancer Res. 2002;62:4282–4288.PubMedGoogle Scholar
  131. 131.
    Opanasopit P, Sakai M, Nishikawa M, et al. Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers.J Control Release. 2002;80:283–294.PubMedCrossRefGoogle Scholar
  132. 132.
    Guo X, Jr. Szoka FC, Jr. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate.Bioconjug Chem. 2001;12:291–300.PubMedCrossRefGoogle Scholar
  133. 133.
    Boomer JA, Thompson DH. Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications.Chem Phys Lipids. 1999;99:145–153.PubMedCrossRefGoogle Scholar
  134. 134.
    Zalipsky S, 2nd, Qazen M, 2nd, Walker JA, 2nd, et al. New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine.Bioconjug Chem. 1999;10:703–707.PubMedCrossRefGoogle Scholar
  135. 135.
    Kratz F, Beyer U, Schutte MT. Drug-polymer conjugates containing acid-cleavable bonds.Crit Rev Ther Drug Carrier Syst. 1999;16:245–288.PubMedGoogle Scholar
  136. 136.
    Zhang JX, Zalipsky S, Mullah N, et al. Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers.Pharmacol Res. 2004;49:185–198.PubMedCrossRefGoogle Scholar
  137. 137.
    Roux E, Francis M, Winnik FM, Leroux JC. Polymer based pH-sensitive carriers as a means to improve the cytoplasmic delivery of drugs.Int J Pharm. 2002;242:25–36.PubMedCrossRefGoogle Scholar
  138. 138.
    Simoes S, Moreira JN, Fonseca C, et al. On the formulation of pH-sensitive liposomes with long circulation times.Adv Drug Deliv Rev. 2004;56:947–965.PubMedCrossRefGoogle Scholar
  139. 139.
    Roux E, Passirani C, Scheffold S, et al. Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes.J Control Release. 2004;94:447–451.PubMedCrossRefGoogle Scholar
  140. 140.
    Leroux J, Roux E, Le Garrec D, et al. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles.J Control Release. 2001;72:71–84.PubMedCrossRefGoogle Scholar
  141. 141.
    Roux E, Stomp R, Giasson S, et al. Steric stabilization of liposomes by pH-responsive N-isopropylacrylamide copolymer.J Pharm Sci. 2002;91:1795–1802.PubMedCrossRefGoogle Scholar
  142. 142.
    Sudimack JJ, Guo W, Tjarks W, Lee RJ. A novel pH-sensitive liposome formulation containing oleyl alcohol.Biochim Biophys Acta. 2002;1564:31–37.PubMedCrossRefGoogle Scholar
  143. 143.
    Lee ES, Shin HJ, Na K, Bae YH. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization.J Control Release. 2003;90:363–374.PubMedCrossRefGoogle Scholar
  144. 144.
    Turk MJ, Reddy JA, Chmielewski JA, Low PS. Characterization of a novel pH-sensitive peptide that enhances drug release from folate-targeted liposomes at endosomal pHs.Biochim Biophys Acta. 2002;1559:56–68.PubMedCrossRefGoogle Scholar
  145. 145.
    Kakudo T, Chaki S, Futaki S, et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system.Biochemistry. 2004;43:5618–5628.PubMedCrossRefGoogle Scholar
  146. 146.
    Shi G, Guo W, Stephenson SM, Lee RJ. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive liposomes composed of cationic/anionic lipid combinations.J Control Release. 2002;80:309–319.PubMedCrossRefGoogle Scholar
  147. 147.
    Bae Y, Jang WD, Nishiyama N, et al. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery.Mol BioSyst. 2005;1:242–250.PubMedCrossRefGoogle Scholar
  148. 148.
    Gao ZG, Lee DH, Kim DI, Bae YH. Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice.J Drug Target. 2005;13:391–397.PubMedCrossRefGoogle Scholar
  149. 149.
    Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor.J Control Release. 2005;103:405–418.PubMedCrossRefGoogle Scholar
  150. 150.
    Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions.Biomaterials. 2005;26:5064–5074.PubMedCrossRefGoogle Scholar
  151. 151.
    Sawant RM, Hurley JP, Salmaso S, et al. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers.Bioconjug Chem. 2006;17:943–949.PubMedCrossRefGoogle Scholar
  152. 152.
    Torchilin VP.Handbook of Targeted Delivery of Imaging Agents. Boca Raton, FL: CRC Press; 1995.Google Scholar
  153. 153.
    Sullivan DC, Ferrari M. Nanotechnology and tumor imaging: seizing an opportunity.Mol Imaging. 2004;3:364–369.PubMedCrossRefGoogle Scholar
  154. 154.
    Morawski AM, Lanza GA, Wickline SA. Targeted contrast agents for magnetic resonance imaging and ultrasound.Curr Opin Biotechnol. 2005;16:89–92.PubMedCrossRefGoogle Scholar
  155. 155.
    Tilcock C, Unger E, Cullis P, MacDougall P. Liposomal Gd-DTPA: preparation and characterization of relaxivity.Radiology. 1989;171:77–80.PubMedGoogle Scholar
  156. 156.
    Kabalka GW, Davis MA, Holmberg E, et al. Gadolinium-labeled liposomes containing amphiphilic Gd-DTPA derivatives of varying chain length: targeted MRI contrast enhancement agents for the liver.Magn Reson Imaging. 1991;9:373–377.PubMedCrossRefGoogle Scholar
  157. 157.
    Phillips WT, Goins B. Targeted delivery of imaging agents by liposomes. In: Torchilin VP, ed.Handbook of Targeted Delivery of Imaging Agents. Boca Raton, FL: CRC Press, 1995:149–173.Google Scholar
  158. 158.
    Tilcock C. Liposomal paramagnetic magnetic resonance contrast agents. In: Gregoriadis G, ed.Liposome Technology. Boca Raton, FL: CRC Press, 1993:65–87.Google Scholar
  159. 159.
    Schwendener RA, Wuthrich R, Duewell S, et al. A pharmacokinetic and MRI study of unilamellar gadolinium-, manganese-, and iron-DTPA-stearate liposomes as organ-specific contrast agents.Invest Radiol. 1990;25:922–932.PubMedCrossRefGoogle Scholar
  160. 160.
    Torchilin VP, Trubetskoy VS. In vivo visualizing of organs and tissues with liposomes.J Liposome Res. 1995;5:795–812.CrossRefGoogle Scholar
  161. 161.
    Torchilin VP. Surface-modified liposomes in gamma- and MR-imaging.Adv Drug Deliv Rev. 1997;24:301–313.CrossRefGoogle Scholar
  162. 162.
    Kabalka GW, Davis MA, Moss TH, et al. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver.Magn Reson Med. 1991;19:406–415.PubMedCrossRefGoogle Scholar
  163. 163.
    Grant CW, Karlik S, Florio E. A liposomal MRI contrast agent: phosphatidylethanolamine-DTPA.Magn Reson Med. 1989;11:236–243.PubMedCrossRefGoogle Scholar
  164. 164.
    Glogard C, Stensrud G, Hovland R, et al. Liposomes as carriers of amphiphilic gadolinium chelates: the effect of membrane composition on incorporation efficacy and in vitro relaxivity.Int J Pharm. 2002;233:131–140.PubMedCrossRefGoogle Scholar
  165. 165.
    Torchilin VP. Polymeric contrast agents for medical imaging.Curr Pharm Biotechnol. 2000;1:183–215.PubMedCrossRefGoogle Scholar
  166. 166.
    Trubetskoy VS, Torchilin VP. New approaches in the chemical design of Gd-containing liposomes for use in magnetic resonance imaging of lymph nodes.J Liposomes Res. 1994;4:961–980.CrossRefGoogle Scholar
  167. 167.
    Torchilin VP. Novel polymers in microparticulate diagnostic agents.Chemetch. 1999;29:27–34.Google Scholar
  168. 168.
    Trubetskoy VS, Torchilin VP. Polyethyleneglycol based micelles as carriers of therapeutic and diagnostic agents.STP Pharma Sci. 1996;6:79–86.Google Scholar
  169. 169.
    Torchilin VP, Trubetskoy VS, Wolf GL. Magnetic resonance imaging of lymph nodes with GD-containing liposomes. In: Torchilin VP, ed.Handbook of Targeted Delivery of Imaging Agents. Boca Raton, FL: CRC Press; 1995:403–413.Google Scholar
  170. 170.
    Patel HM, Boodle KM, Vaughan-Jones R. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes.Biochim Biophys Acta. 1984;801:76–86.PubMedGoogle Scholar
  171. 171.
    Hlrano K, Hunt CA. Lymphatic transport of liposome-encapsulated agents: effects of liposome size following intraperitoneal administration.J Pharm Sci. 1985;74:915–921.CrossRefGoogle Scholar
  172. 172.
    Unger EC, Winokur T, MacDougall P, et al. Hepatic metastases: liposomal Gd-DTPA-enhanced MR imaging.Radiology. 1989;171:81–85.PubMedGoogle Scholar
  173. 173.
    Torchilin VP, Trubetskoy VS, Narula J, Khaw BA. PEG-modified liposomes for gamma- and magnetic resonance imaging. In: Lasic DD, Martin FJ, eds.Stealth Liposomes. Boca Raton, FL: CRC Press; 1995:225–231.Google Scholar
  174. 174.
    Trubetskoy VS, Cannillo JA, Milshtein A, et al. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties.Magn Reson Imaging. 1995;13:31–37.PubMedCrossRefGoogle Scholar
  175. 175.
    Goins B, Phillips T. Radiolabeled liposomes for imaging and biodistribution studies. In: Torchilin VP, Weissig V, eds.Liposomes: A Practical Approach. London, UK: Oxford University Press; 2003:319–336.Google Scholar
  176. 176.
    Harrington KJ, Rowlinson-Busza G, Syrigos KN, et al. Biodistribution and pharmacokinetics of 111 In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies.Br J Cancer. 2000;83:684–688.PubMedCrossRefGoogle Scholar
  177. 177.
    Harrington KJ, Rowlinson-Busza G, Syrigos KN, et al. Influence of tumour size on uptake of(111)In-DTPA-labelled pegylated liposomes in a human tumour xenograft model.Br J Cancer. 2000;83:684–688.PubMedCrossRefGoogle Scholar
  178. 178.
    Koukourakis MI, Koukouraki S, Giatromanolaki A, et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer.J Clin Oncol. 1999;17:3512–3521.PubMedGoogle Scholar
  179. 179.
    Harrington KJ, Mohammadtaghi S, Uster PS, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes.Clin Cancer Res. 2001;7:243–254.PubMedGoogle Scholar
  180. 180.
    Stewart SS, Harrington KJ. The biodistribution and pharmacokinetics of stealth liposomes in patients with solid tumors.Oncology. 1997;11:33–37.Google Scholar
  181. 181.
    Koukourakis MI, Koukouraki S, Fezoulidis I, et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours.Br J Cancer. 2000;83:1281–1286.PubMedCrossRefGoogle Scholar
  182. 182.
    Koukourakis MI, Koukouraki S, Giatromanolaki A, et al. High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas—rationale for combination with radiotherapy.Acta Oncol. 2000;39:207–211.PubMedCrossRefGoogle Scholar
  183. 183.
    Harrington KJ, Rowlinson-Busza G, Syrigos KN, et al. Pegylated liposomes have potential as vehicles for intratumoral and subcutaneous drug delivery.Clin Cancer Res. 2000;6:2528–2537.PubMedGoogle Scholar
  184. 184.
    Bao A, Goins B, Klipper R, et al. Direct 99m Tc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies.J Pharmacol Exp Ther. 2003;308:419–425.PubMedCrossRefGoogle Scholar
  185. 185.
    Belhaj-Tayeb H, Briane D, Vergote J, et al. In vitro and in vivo study of 99m Tc-MIBI encapsulated in PEG-liposomes: a promising radiotracer for tumour imaging.Eur J Nucl Med Mol Imaging. 2003;30:502–509.PubMedCrossRefGoogle Scholar
  186. 186.
    Huh YM, Jun YW, Song HT, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals.J Am Chem Soc. 2005;127:12387–12391.PubMedCrossRefGoogle Scholar
  187. 187.
    Elbayoumi TA, Torchilin VP. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies.Eur J Nucl Med Mol Imaging. 2006;33:1196–1205.PubMedCrossRefGoogle Scholar
  188. 188.
    Elbayoumi TA, Pabba S, Roby A, Torchilin VP. Anti-nucleosome antibody-modified liposomes and lipid-core micelles for tumor-targeted delivery of therapeutic and diagnostic agents.J Liposome Res. 2007;17:1–14.PubMedCrossRefGoogle Scholar
  189. 189.
    Roby A, Erdogan S, Torchilin VP. Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG-PE micelles results in dramatically improved cancer cell killing in vitro.Eur J Pharm Biopharm. 2006;62:235–240.PubMedCrossRefGoogle Scholar
  190. 190.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J Am Chem Soc.. 2006;128:2115–2120.PubMedCrossRefGoogle Scholar
  191. 191.
    Lin AW, Lewinski NA, West JL, et al.. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells.J Biomed Opt. 2005;10:064035–064044.PubMedCrossRefGoogle Scholar
  192. 192.
    Derycke AS, de Witte PA. Liposomes for photodynamic therapy.Adv Drug Deliv Rev. 2004;56:17–30.PubMedCrossRefGoogle Scholar
  193. 193.
    Takeuchi Y, Ichikawa K, Yonezawa S, et al.. Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome.J Control Release. 2004;97:231–240.PubMedCrossRefGoogle Scholar
  194. 194.
    Bourre L, Thibaut S, Fimiani M, et al.. In vivo photosensitizing efficiency of a diphenylchlorin sensitizer: interest of a DMPC liposome formulation.Pharmacol Res. 2003;47:253–261.PubMedCrossRefGoogle Scholar
  195. 195.
    Brignole C, Pagnan G, Marimpietri D, et al.. Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment.Cancer Lett. 2003;197:231–235.PubMedCrossRefGoogle Scholar
  196. 196.
    Rubas W, Supersaxo A, Weder HG, et al.. Treatment of murine L1210 lymphoid leukemia and melanoma B16 with lipophilic cytosine arabinoside prodrugs incorporated into unilamellar liposomes.Int J Cancer. 1986;37:149–154.PubMedCrossRefGoogle Scholar
  197. 197.
    Fonseca MJ, Jagtenberg JC, Haisma HJ, Storm G. Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate.Pharm Res. 2003;20:423–428.PubMedCrossRefGoogle Scholar
  198. 198.
    Jordan A, Scholz R, Maier-Hauff K, et al.. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma.J Neurooncol. 2006;78:7–14.PubMedCrossRefGoogle Scholar
  199. 199.
    Hilger I, Hiergeist R, Hergt R, et al.. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study.Invest Radiol. 2002;37:580–586.PubMedCrossRefGoogle Scholar
  200. 200.
    Johannsen M, Thiesen B, Jordan A, et al.. Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.Prostate. 2005;64:283–292.PubMedCrossRefGoogle Scholar
  201. 201.
    Johannsen M, Gneveckow U, Eckelt L, et al.. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.Int J Hyperthermia. 2005;21:637–647.PubMedCrossRefGoogle Scholar
  202. 202.
    Johannsen M, Thiesen B, Gneveckow U, et al.. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer.Prostate. 2006;66:97–104.PubMedCrossRefGoogle Scholar
  203. 203.
    Ivkov R, DeNardo SJ, Daum W, et al.. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.Clin Cancer Res. 2005;11:7093s-7103s.PubMedCrossRefGoogle Scholar
  204. 204.
    Egleton RD, Davis TP. Bioavailability and transport of peptides and peptide drugs into the brain.Peptides. 1997;18:1431–1439.PubMedCrossRefGoogle Scholar
  205. 205.
    Torchilin VP, ed.Immobilized Enzymes in Medicine. New York, NY: Springer-Verlag; 1991.Google Scholar
  206. 206.
    Torchilin VP, Zhou F, Huang L. pH-sensitive liposomes.J Liposome Res. 1993;3:201–255.Google Scholar
  207. 207.
    Sheff D. Endosomes as a route for drug delivery in the real world.Adv Drug Deliv Rev. 2004;56:927–930.PubMedCrossRefGoogle Scholar
  208. 208.
    Asokan A, Cho MJ. Cytosolic delivery of macromolecules, II: mechanistic studies with pH-sensitive morpholine lipids.Biochim Biophys Acta. 2003;1611:151–160.PubMedCrossRefGoogle Scholar
  209. 209.
    Shalaev EY, Steponkus PL. Phase diagram of 1,2-dioleoylphosphatidylethanolamine (DOPE): water system at subzero temperatures and at low water contents.Biochim Biophys Acta. 1999;1419:229–247.PubMedCrossRefGoogle Scholar
  210. 210.
    Gaspar MM, Perez-Soler R, Cruz ME. Biological characterization of L-asparaginase liposomal formulations.Cancer Chemother Pharmacol. 1996;38:373–377.PubMedCrossRefGoogle Scholar
  211. 211.
    Kisel MA, Kulik LN, Tsybovsky IS, et al.. Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat.Int J Pharm. 2001;216:105–114.PubMedCrossRefGoogle Scholar
  212. 212.
    Geisert EE, Jr, Del Mar NA, Owens JL, Holmberg EG. Transfecting neurons and glia in the rat using pH-sensitive immunoliposomes.Neurosci Lett. 1995;184:40–43.PubMedCrossRefGoogle Scholar
  213. 213.
    Yessine MA, Leroux JC. Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules.Adv Drug Deliv Rev. 2004;56:999–1021.PubMedCrossRefGoogle Scholar
  214. 214.
    Chen G, Hoffman AS. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH.Nature. 1995;373:49–52.PubMedCrossRefGoogle Scholar
  215. 215.
    Bae Y, Nishiyama N, Fukushima S, et al.. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy.Bioconjug Chem. 2005;16:122–130.PubMedCrossRefGoogle Scholar
  216. 216.
    Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids.Gene Ther. 2001;8:1188–1196.PubMedCrossRefGoogle Scholar
  217. 217.
    Wang J, Mongayt D, Torchilin VP. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids.J Drug Target. 2005;13:73–80.PubMedCrossRefGoogle Scholar
  218. 218.
    Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat transactivator protein.Cell. 1988;55:1179–1188.PubMedCrossRefGoogle Scholar
  219. 219.
    Frankel AD, Pabo CO. Cellular uptake of the TAT protein from human immunodeficiency virus.Cell. 1988;55:1189–1193.PubMedCrossRefGoogle Scholar
  220. 220.
    Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis.Proc Natl Acad Sci USA. 1991;88:1864–1868.PubMedCrossRefGoogle Scholar
  221. 221.
    Elliott G, O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein.Cell. 1997;88:223–233.PubMedCrossRefGoogle Scholar
  222. 222.
    Schwarze SR, Dowdy SF. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA.Trends Pharmacol Sci. 2000;21:45–48.PubMedCrossRefGoogle Scholar
  223. 223.
    Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides.Trends Pharmacol Sci. 2000;21:99–103.PubMedCrossRefGoogle Scholar
  224. 224.
    Zaro JL, Shen WC. Quantitative comparison of membrane transduction and endocytosis of oligopeptides.Biochem Biophys Res Commun. 2003;307:241–247.PubMedCrossRefGoogle Scholar
  225. 225.
    Wadia JS, Dowdy SF. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer.Adv Drug Deliv Rev. 2005;57:579–596.PubMedCrossRefGoogle Scholar
  226. 226.
    Rothbard JB, Jessop TC, Wender PA. Adaptive translocation: the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells.Adv Drug Deliv Rev. 2005;57:495–504.PubMedCrossRefGoogle Scholar
  227. 227.
    Fawell S, Seery J, Daikh Y, et al.. TAT-mediated delivery of heterologous proteins into cells.Proc Natl Acad Sci USA. 1994;91:664–668.PubMedCrossRefGoogle Scholar
  228. 228.
    Kim DT, Mitchell DJ, Brockstedt DG, et al.. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide.J Immunol. 1997;159:1666–1668.PubMedGoogle Scholar
  229. 229.
    Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse.Science. 1999;285:1569–1572.PubMedCrossRefGoogle Scholar
  230. 230.
    Nagahara H, Vocero-Akbani AM, Snyder EL, et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kipl induces cell migration.Nat Med. 1998;4:1449–1452.PubMedCrossRefGoogle Scholar
  231. 231.
    Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back to basics.Adv Drug Deliv Rev. 2005;57:559–577.PubMedCrossRefGoogle Scholar
  232. 232.
    Roeder GE, Parish JL, Stern PL, Gaston K. Herpes simplex virus VP22-human papillomavirus E2 fusion proteins produced in mammalian or bacterial cells enter mammlian cells and induce apoptotic cell death.Biotechnol Appl Biochem. 2004;40:157–165.PubMedCrossRefGoogle Scholar
  233. 233.
    Liu CS, Kong B, Xia HH, et al.. VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death.J Gene Med. 2001;3:145–152.PubMedCrossRefGoogle Scholar
  234. 234.
    Phelan A, Elliott G, O'Hare P. Intercellular delivery of functional p53 by the herpesvirus protein VP22.Nat Biotechnol. 1998;16:440–443.PubMedCrossRefGoogle Scholar
  235. 235.
    Zavaglia D, Normand N, Brewis N, et al.. VP22-mediated and light-activated delivery of an anti-c-rafl antisense oligonucleotide improves its activity after intratumoral injection in nude mice.Mol Ther. 2003;8:840–845.PubMedCrossRefGoogle Scholar
  236. 236.
    Tasciotti E, Zoppe M, Giacca M. Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 Tat.Cancer Gene Ther. 2003;10:64–74.PubMedCrossRefGoogle Scholar
  237. 237.
    Nori A, Jensen KD, Tijerina M, et al.. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells.Bioconjug Chem.. 2003;14:44–50.PubMedCrossRefGoogle Scholar
  238. 238.
    Nori A, Jensen KD, Tijerina M, et al.. Subcellular trafficking of HPMA copolymer-Tat conjugates in human ovarian carcinoma cells.J Control Release. 2003;91:53–59.PubMedCrossRefGoogle Scholar
  239. 239.
    Vocero-Akbani A, Lissy NA, Dowdy SF. Transduction of full-length Tat fusion proteins directly into mammalian cells: analysis of T cell receptor activation-induced cell death.Methods Enzymol. 2000;322:508–521.PubMedCrossRefGoogle Scholar
  240. 240.
    Harbour JW, Worley L, Ma D, Cohen M. Transducible peptide therapy for uveal melanoma and retinoblastoma.Arch Ophthalmol. 2002;120:1341–1346.PubMedGoogle Scholar
  241. 241.
    Shokolenko IN, Alexeyev MF, LeDoux SP, Wilson GL. TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells.DNA Repair (Amst). 2005;4:511–518.CrossRefGoogle Scholar
  242. 242.
    Parada Y, Banerji L, Glassford J, et al.. BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kipl expression.J Biol Chem. 2001;276:23572–23580.PubMedCrossRefGoogle Scholar
  243. 243.
    Tseng YL, Liu JJ, Hong RL. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study.Mol Pharmacol. 2002;62:864–872.PubMedCrossRefGoogle Scholar
  244. 244.
    Shibagaki N, Udey MC. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity.J Immunol. 2002;168:2393–2401.PubMedGoogle Scholar
  245. 245.
    Wang HY, Fu T, Wang G, et al.. Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells.J Clin Invest. 2002;109:1463–1470.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2007

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and NanomedicineNortheastern UniversityBoston

Personalised recommendations