Advertisement

The AAPS Journal

, Volume 8, Issue 1, pp E126–E137 | Cite as

Molecular recognition of opioid receptor ligands

  • Brian E. Kane
  • Bengt Svensson
  • David M. Ferguson
Article

Abstract

The cloning of the opioid receptors and subsequent use of recombinant DNA technology have led to many new insights into ligand binding. Instead of focusing on the structural features that lead to increased affinity and selectivity, researchers are now able to focus on why these features are important. Site-directed mutagenesis and chimeric data have often been at the forefront in answering these questions. Herein, we survey pharmacophores of several opioid ligands in an effort to understand the structural requirements for ligand binding and selectivity. Models are presented and compared to illustrate key sites of recognition for both opiate and nonopiate ligands. The results indicate that different ligand classes may recognize different sites within the receptor, suggesting that multiple epitopes may exist for ligand binding and selectivity.

Keywords

Opioid structure-function pharmacophore mutagenesis chimeric 

References

  1. 1.
    Haeyoung K, Raynor K, Reisine T. Amino acids in the cloned mouse kappa receptor that are necessary for high affinity agonist binding but not antagonist binding.Regul Pept. 1994;54:155–156.CrossRefGoogle Scholar
  2. 2.
    Meng F, Hoversten MT, Thompson RC, Taylor L, Watson SJ, Akil H. A chimeric study of the molecular basis of affinity and selectivity of the κ and the δ opioid receptors: potential role of extracellular domains.J Biol Chem. 1995;270:12730–12736.CrossRefPubMedGoogle Scholar
  3. 3.
    Xue JC, Chen C, Zhu J, et al. The third extracellular loop of the μ opioid receptor is important for agonist selectivity.J Biol Chem. 1995;270:12977–12979.CrossRefPubMedGoogle Scholar
  4. 4.
    Meng F, Ueda Y, Hoversten MT, et al. Mapping the receptor domains critical for the binding selectivity of delta-opioid receptor ligands.Eur J Pharmacol. 1996;311:285–292.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang JB, Johnson PS, Wu JM, Wang WF, Uhl GR. Human κ opiate receptor second extracellular loop elevates dynorphin's affinity for human μ/κ chimeras.J Biol Chem. 1994;269:25966–25969.PubMedGoogle Scholar
  6. 6.
    Teschemacher H, Opheim KE, Cox BM, Goldstein A. Peptidelike substance from pituitary that acts like morphine, I: isolation.Life Sci. 1975;16:1771–1775.CrossRefPubMedGoogle Scholar
  7. 7.
    Strader CD, Sigal IS, Dixon RA. Structural basis of β-adrenergic receptor function.FASEB J. 1989;3:1825–1832.PubMedGoogle Scholar
  8. 8.
    Hibert MF, Trumpp-Kallmeyer S, Bruinvels A, Hoflack J. Three-dimensional models of neurotransmitter G-binding protein-coupled receptors.Mol Pharmacol. 1991;40:8–15.PubMedGoogle Scholar
  9. 9.
    Trumpp-Kallmeyer S, Hoflack J, Bruinvels A, Hibert M. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors.J Med Chem. 1992;35:3448–3462.CrossRefPubMedGoogle Scholar
  10. 10.
    Baldwin JM. The probable arrangement of the helices in G protein-coupled receptors.EMBO J. 1993;12:1693–1703.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Strader CD, Sigal IS, Candelore MR, Rands E, Hill WS, Dixon RAF. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function.J Biol Chem. 1988;263:10267–10271.PubMedGoogle Scholar
  12. 12.
    Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RA. Identification of two serine residues involved in agonist activation of the β-adrenergic receptor.J Biol Chem. 1989;264:13572–13578.PubMedGoogle Scholar
  13. 13.
    Lenz GR, Evans SM, Walters DE, Hopfinger AJ.Opiates. Orlando, FL: Academic Press; 1986.Google Scholar
  14. 14.
    Surratt CK, Johnson PS, Moriwaki A, et al. Mu opiate receptor. Charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity.J Biol Chem. 1994;269: 20548–20553.PubMedGoogle Scholar
  15. 15.
    Spivak CE, Beglan CL, Seidleck BK, et al. Naloxone activation of μ-opioid receptors mutated at a histidine residue lining the opioid binding cavity.Mol Pharmacol. 1997;52:983–992.PubMedGoogle Scholar
  16. 16.
    Schwyzer R, Eberle A. On the molecular mechanism of α-MSH receptor interactions.Front Horm Res. 1977;4:18–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Portoghese PS, Sultana M, Takemori AE. Design of peptidomimetic δ opioid receptor antagonists using the message-address concept.J Med Chem. 1990;33:1714–1720.CrossRefPubMedGoogle Scholar
  18. 18.
    Resnick RB, Volavka J, Freedman AM, Thomas M. Studies of EN-1639A (naltrexone): a new narcotic antagonist.Am J Psychiatry. 1974;131:646–650.PubMedGoogle Scholar
  19. 19.
    Portoghese PS, Sultana M, Takemori AE. Naltrindole: a highly selective and potent non-peptide delta opioid receptor antagonist.Eur J Pharmacol. 1988;146:185–186.CrossRefPubMedGoogle Scholar
  20. 20.
    Jones RM, Hjorth SA, Schwartz TW, Portoghese PS. Mutational evidence for a common κ antagonist binding pocket in the wild-type κ and mutant μ[K303E] opioid receptors.J Med Chem. 1998;41:4911–4914.CrossRefPubMedGoogle Scholar
  21. 21.
    Magnan J, Paterson SJ, Tavani A, Kosterlitz HW. The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties.Naunyn Schmiedebergs Arch Pharmacol. 1982;319:197–205.CrossRefPubMedGoogle Scholar
  22. 22.
    Szmuszkovicz J, Von Voightlander PF. Benzeneacetamide amines: structurally novel non-μ-opioids.J Med Chem. 1982;25: 1125–1126.CrossRefPubMedGoogle Scholar
  23. 23.
    Lahti RA, Mickelson MM, McCall JM, Von Voigtlander PF. [3H]U-69593 a highly selective ligand for the opioid kappa receptor.Eur J Pharmacol. 1985;109:281–284.CrossRefPubMedGoogle Scholar
  24. 24.
    Subramanian G, Paterlini MG, Portoghese PS, Ferguson DM. Molecular docking reveals a novel binding site model for fentanyl at the μ-opioid receptor.J Med Chem. 2000;43:381–391.CrossRefPubMedGoogle Scholar
  25. 25.
    Xu H, Lu YF, Partilla JS, et al. Opioid peptide receptor studies, 11: involvement of Tyr149, Trp318 and His319 of the rat μ-opioid receptor in binding of μ-selective ligands.Synapse. 1999;32:23–28.CrossRefPubMedGoogle Scholar
  26. 26.
    Jiang HL, Huang XQ, Rong SB, et al. Theoretical studies on opioid receptors and ligands, I: molecular modeling and QSAR studies on the interaction mechanism of fentanyl analogs binding to μ-opioid receptor.Int J Quantum Chem. 2000;78:285–293.CrossRefGoogle Scholar
  27. 27.
    Subramanian G, Paterlini MG, Larson DL, Portoghese PS, Ferguson DM. Conformational analysis and automated receptor docking of selective arylacetamide-based κ-opioid agonists.J Med Chem. 1998;41:4777–4789.CrossRefPubMedGoogle Scholar
  28. 28.
    Lavecchia A, Greco G, Novellino E, Vittorio F, Ronsisvalle G. Modeling of κ-opioid receptor/agonists interactions using pharmacophore-based and docking simulations.J Med Chem. 2000;43:2124–2134.CrossRefPubMedGoogle Scholar
  29. 29.
    Cappelli A, Anzini M, Vomero S, et al. Synthesis, biological evaluation, and quantitative receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as novel tifluadom-like ligands with high affinity and selectivity for κ-opioid receptors.J Med Chem. 1996;39:860–872.CrossRefPubMedGoogle Scholar
  30. 30.
    Pogozheva ID, Lomize AL, Mosberg HI. Opioid receptor three-dimensional structures from distance geometry calculations with hydrogen bonding constraints.Biophys J. 1998;75:612–634.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Knapp RJ, Malatynska E, Collins N, et al. Molecular biology and pharmacology of cloned opioid receptors.FASEB J. 1995;9:516–525.PubMedGoogle Scholar
  32. 32.
    Jiang Q, Takemori AE, Sultana M, et al. Differential antagonism of opioid delta antinociception by [D-Ala2,Leu5,Cys6]enkephalin and naltrindole 5′-isothiocyanate: evidence for delta receptor subtypes.J Pharmacol Exp Ther. 1991;257:1069–1075.PubMedGoogle Scholar
  33. 33.
    Sofuoglu M, Portoghese PS, Takemori AE. 7-Benzylidenenaltrexone (BTNX): a selective Δ1 opioid receptor antagonist in the mouse spinal cord.Life Sci. 1993;52:769–775.CrossRefPubMedGoogle Scholar
  34. 34.
    Zaki PA, Bilsky EJ, Vanderah TW, Lai J, Evans CJ, Porreca F. Opioid receptor types and subtypes: the δ receptor as a model.Annu Rev Pharmacol Toxicol. 1996;36:379–401.CrossRefPubMedGoogle Scholar
  35. 35.
    Stenkamp RE, Filipek S, Driessen CA, Teller DC, Palczewski K. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.Biochim Biophys Acta. 2002;1565:168–182.CrossRefPubMedGoogle Scholar
  36. 36.
    Filipek S, Teller DC, Palczewski K, Stenkamp R. The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors.Annu Rev Biophys Biomol Struct. 2003;32:375–397.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Metzger TG, Paterlini MG, Portoghese PS, Ferguson DM. Application of the message-address concept of the docking of naltrexone and selective naltrexone-derived opioid antagonists into opioid receptor models.Neurochem Res. 1996;21:1287–1294.CrossRefPubMedGoogle Scholar
  38. 38.
    Alkorta I, Loew GH. A 3D model of the δ opioid receptor and ligand-receptor complexes.Protein Eng. 1996;9:573–583.CrossRefPubMedGoogle Scholar
  39. 39.
    Strahs D, Weinstein H. Comparative modeling and molecular dynamics studies of the δ, κ and μ opioid receptors.Protein Eng. 1997;10:1019–1038.CrossRefPubMedGoogle Scholar
  40. 40.
    Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy evaluation.J Comput Chem. 1992;13:505–524.CrossRefGoogle Scholar
  41. 41.
    Blumberg H, Dayton HB, Wolf PS. Counteraction of narcotic antagonist analgesics by the narcotic antagonist naloxone.Proc Soc Exp Biol Med. 1966;123:755–758.CrossRefPubMedGoogle Scholar
  42. 42.
    Pasternak GW, Snyder SH. Opiate receptor binding: enzymic treatments that discriminate between agonist and antagonist interactions.Mol Pharmacol. 1975;11:478–484.Google Scholar
  43. 43.
    Beckett AH, Casy AF. Synthetic analgesics: stereochemical considerations.J Pharm Pharmacol. 1954;6:986–1001.CrossRefPubMedGoogle Scholar
  44. 44.
    Attwood TK, Findlay JBC. Fingerprinting G-protein-coupled receptors.Protein Eng. 1994;7:195–203.CrossRefPubMedGoogle Scholar
  45. 45.
    Befort K, Tabbara L, Kling D, Maigret B, Kieffer BL. Role of aromatic transmembrane residues on the δ-opioid receptor in ligand recognition.J Biol Chem. 1996;271:10161–10168.CrossRefPubMedGoogle Scholar
  46. 46.
    Hjorth SA, Thirstrup K, Grandy DK, Schwartz TW. Analysis of selective binding epitopes for the κ-opioid receptor antagonist nor-binaltorphimine.Mol Pharmacol. 1995;47:1089–1094.PubMedGoogle Scholar
  47. 47.
    Valiquette M, Vu HK, Yue SY, Wahlestedt C, Walker P. Involvement of Trp-284, Val-296, and Val-297 of the human δ-opioid receptor in binding of δ-selective ligands.J Biol Chem. 1996;271: 18789–18796.CrossRefPubMedGoogle Scholar
  48. 48.
    Portoghese AS, Lipkowski AW, Takemori AE. Bimorphinans as highly selective, potent κ opioid receptor antagonists.J Med Chem. 1987;30:238–239.CrossRefPubMedGoogle Scholar
  49. 49.
    Metzger TG, Paterlini MG, Ferguson DM, Portoghese PS. Investigation of the selectivity of oxymorphone- and naltrexone-derived ligands via site-directed mutagenesis of opioid receptors: exploring the ‘address’ recognition locus.J Med Chem. 2001;44:857–862.CrossRefPubMedGoogle Scholar
  50. 50.
    Portoghese PS, Moe ST, Takemori AE. A selective θ1 opioid receptor agonist derived from oxymorphone. Evidence for separate recognition sites for θ1 opioid receptor agonists and antagonists.J Med Chem. 1993;36:2572–2574.CrossRefPubMedGoogle Scholar
  51. 51.
    Bonner G, Meng F, Akil H. Selectivity of μ-opioid receptor determined by interfacial residues near third extracellular loop.Eur J Pharmacol. 2000;403:37–44.CrossRefPubMedGoogle Scholar
  52. 52.
    Pil J, Tytgat J. The role of the hydrophilic Asn230 residue of the μ-opioid receptor in the potency of various opioid agonists.Br J Pharmacol. 2001;134:496–506.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kanematsu K, Sagara T. An approach to the rational design of opioid receptor ligands: non-narcotic κ-opioid receptor ligand KT-95 free from euphoria and/or dysphoria.Curr Med Chem CNS Agents. 2001;1:1–25.Google Scholar
  54. 54.
    Liu-Chen LY, Li SX, Tallarida RJ. Studies on kinetics of [3H]β-funaltrexamine binding to μ opioid receptor.Mol Pharmacol. 1990;37:243–250.PubMedGoogle Scholar
  55. 55.
    Chen C, Yin J, Riel JK, et al. Determination of the amino acid residue involved in [3H]β-funaltrexamine covalent binding in the cloned rat μ-opioid receptor.J Biol Chem. 1996;271:21422–21429.CrossRefPubMedGoogle Scholar
  56. 56.
    Calderon SN, Rothman RB, Porreca F, et al. Probes for narcotic receptor mediated phenomena, 19: synthesis of (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80): a highly selective, nonpeptide δ opioid receptor agonist.J Med Chem. 1994;37:2125–2128.CrossRefPubMedGoogle Scholar
  57. 57.
    Liao S, Alfaro-Lopez J, Shenderovich MD, et al. De novo design, synthesis, and biological activities of high-affinity and selective non-peptide agonists of the delta-opioid receptor.J Med Chem. 1998;41:4767–4776.CrossRefPubMedGoogle Scholar
  58. 58.
    Coop A, Jacobson AE. The LMC delta opioid recognition pharmacophore: comparison of SNC80 and oxymorphindole.Bioorg Med Chem Lett. 1999;9:357–362.CrossRefPubMedGoogle Scholar
  59. 59.
    Bernard D, Coop A, MacKerell AD. 2D conformationally sampled pharmacophore: a ligand-based pharmacophore to differentiate delta opioid agonists from antagonists.J Am Chem Soc. 2003;125:3101–3107.CrossRefPubMedGoogle Scholar
  60. 60.
    Carson JR, Carmosin FJ, Fitzpatrick LJ, Reitz AB, Jetter MC, inventors. 4-[aryl(piperidin-4-yl)]aminobenzamides. US patent 6 436 959. December 23, 1998.Google Scholar
  61. 61.
    Wei ZY, Brown W, Takasaki B, et al. N,N-Diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide: a novel, exceptionally selective, potent δ opioid receptor agonist with oral bioavailability and its analogues.J Med Chem. 2000;43:3895–3905.CrossRefPubMedGoogle Scholar
  62. 62.
    Knapp RJ, Santoro G, De Leon IA, et al. Structure-activity relationships for SNC80 and related compounds at cloned human delta and mu opioid receptors.J Pharmacol Exp Ther. 1996;277:1284–1291.PubMedGoogle Scholar
  63. 63.
    Calderon SN, Coop A. SNC 80 and related δ opioid agonists.Curr Pharm Des. 2004;10:733–742.CrossRefPubMedGoogle Scholar
  64. 64.
    Podlogar BL, Poda GI, Demeter DA, et al. Synthesis and evaluation of 4-(N,N-diarylamino)piperidines with high selectivity to the δ-opioid receptor: a combined 3D-QSAR and ligand docking study.Drug Des Discov. 2000;17:34–50.PubMedGoogle Scholar
  65. 65.
    Dondio G, Ronzoni S, Eggleston DS, et al. Discovery of a novel class of substituted pyrrolooctahydroisoquinolines as potent and selective δ opioid agonists, based on an extension of the message-address concept.J Med Chem. 1997;40:3192–3198.CrossRefPubMedGoogle Scholar
  66. 66.
    Dondio G, Ronzoni S, Petrillo P, Desjarlais RL, Raveglia LF. Pyrrolooctahydroisoquinolines as potent and selective δ opioid receptor ligands: SAR analysis and docking studies.Bioorg Med Chem Lett. 1997;7:2967–2972.CrossRefGoogle Scholar
  67. 67.
    Casy AF, Parfitt RT.Opioid Analgesics: Chemistry and Receptors. New York, NY: Plenum Press, 1986.CrossRefGoogle Scholar
  68. 68.
    Subramanian G, Ferguson DM. Conformational landscape of selective μ-opioid agonists in gas phase and in aqueous solution: the fentanyl series.Drug Des Discov. 2000;17:55–67.PubMedGoogle Scholar
  69. 69.
    Cometta-Morini C, Loew GH. Development of a conformational search strategy for flexible ligands: a study of the potent mu-selective opioid analgesic fentanyl.J Comput Aided Mol Des. 1991;5:335–356.CrossRefPubMedGoogle Scholar
  70. 70.
    Brandt W, Barth A, Holtje HD. A new consistent model explaining structure (conformation)-activity relationships of opiates with μ-selectivity.Drug Des Discov. 1993;10:257–283.PubMedGoogle Scholar
  71. 71.
    Tang Y, Chen KX, Jiang HL, Wang ZX, Ji RY, Chi ZQ. Molecular modeling of μ opioid receptor and its interaction with ohmefentanyl.Zhongguo Yao Li Xue Bao. 1996;17:156–160.PubMedGoogle Scholar
  72. 72.
    Xu H, Lu YF, Partilla JS, et al. Opioid peptide receptor studies, 11: involvement of Tyr149, Trp318 and His319 of the rat μ-opioid receptor in binding of μ-selective ligands.Synapse. 1999;32:23–28.CrossRefPubMedGoogle Scholar
  73. 73.
    Winter CA, Orahovats PD, Lehman EG. Analgesic activity and morphine antagonism of compounds related to nalorphine.Arch Int Pharmacodyn Ther. 1957;110:186–202.PubMedGoogle Scholar
  74. 74.
    Hunter JC, Leighton GE, Meecham KG, et al. CI-977, a novel and selective agonist for the κ-opioid receptor.Br J Pharmacol. 1990;101:183–189.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rees DC. Chemical structures and biological activities of non-peptide selective kappa opioid ligands.Prog Med Chem. 1992;29:109–139.CrossRefPubMedGoogle Scholar
  76. 76.
    Froimowitz M, DiMeglio CM, Makriyannis A. Conformational preferences of the κ-selective opioid agonist U50488. A combined molecular mechanics and nuclear magnetic resonance study.J Med Chem. 1992;35:3085–3094.CrossRefPubMedGoogle Scholar
  77. 77.
    Higginbottom M, Nolan W, O'Toole J, Ratcliffe GS, Rees DC, Roberts E. The design and synthesis of κ opioid ligands based on a binding model for κ agonists.Bioorg Med Chem Lett. 1993;3:841–846.CrossRefGoogle Scholar
  78. 78.
    Rajagopalan P, Scribner RM, Pennev P, et al. Dup 747: sar study.Bioorg Med Chem Lett. 1992;2:721–726.CrossRefGoogle Scholar
  79. 79.
    Thirstrup K, Hjorth SA, Schwartz TW. Investigation of the binding pocket in the kappa opioid receptor by a combination of alanine substitutions and steric hindrance mutagenesis. Poster M30. 27th Meeting of the International Narcotics Research Conference; July 21–26, 1996; Long Beach, CA.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  • Brian E. Kane
    • 1
  • Bengt Svensson
    • 1
  • David M. Ferguson
    • 1
  1. 1.College of Pharmacy, Department of Medicinal ChemistryUniversity of MinnesotaMinneapolis

Personalised recommendations