The AAPS Journal

, Volume 8, Issue 1, pp E118–E125

Opioid ligands with mixed μ/δ opioid receptor interactions: An emerging approach to novel analgesics

Article

Abstract

Opioids are widely used in the treatment of severe pain. The clinical use of the opioids is limited by serious side effects such as respiratory depression, constipation, development of tolerance, and physical dependence and addiction liabilities. Most of the currently available opioid analgesics exert their analgesic and adverse effects primarily through the opioid μ receptors. A large number of biochemical and pharmacological studies and studies using genetically modified animals have provided convincing evidence regarding the existence of modulatory interactions between opioid μ and δ receptors. Several studies indicate that δ receptor agonists as well as δ receptor antagonists can provide beneficial modulation to the pharmacological effects of μ agonists. For example, δ agonists can enhance the analgesic potency and efficacy of μ agonists, and δ antagonists can prevent or diminish the development of tolerance and physical dependence by μ agonists. On the basis of these observations, the development of new opioid ligands possessing mixed μ agonist/δ agonist profile and mixed μ agonist/δ antagonist profile has emerged as a promising new approach to analgesic drug development. A brief overview of μ-δ interactions and recent developments in identification of ligands possessing mixed μ agonist/δ agonist and μ agonist/δ antagonist activities is provided in this report.

Key words

Analgesics Opioid Ligands Mixed Mu/Delta agonists Mixed Mu agonist/Delta antagonists Peptides Nonpeptides 

References

  1. 1.
    Aldrich JV, Vigil-Cruz SC. Narcotic analgesics. In: Abraham DJ, ed.Burger's Medicinal Chemistry and Drug Discovery. Vol 6. New York, NY: John Wiley & Sons; 2003:329–481.Google Scholar
  2. 2.
    Friderichs E. Opioids. In: Buschmann H, Christoph T, Friderichs E, Maul C, Sundermann B, eds.Analgesics From Chemistry and Pharmacology to Clinical Application. Weinheim, Germany: Wiley-VCH; 2002:127–150.Google Scholar
  3. 3.
    Rapaka RS, Porreca F. Development of delta opioid peptides as nonaddicting analgesics.Pharm Res. 1991;8:1–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Traynor JR, Elliott J, δ-Opioid receptor subtypes and cross-talk with μ-receptors.Trends Pharmacol Sci. 1993;14:84–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Rothman RB, Holaday JW, Porreca F. Allosteric coupling among opioid receptors: evidence for an opioid receptor complex. In: Herz A, Akil H, Simon EJ, eds.Handbook of Experimental Pharmacology: Opioids I. Vol 104. Berlin, Germany: Springer-Verlag; 1993:217–237.Google Scholar
  6. 6.
    Jordan BA, Cvejic S, Devi LA. Opioids and their complicated receptor complexes.Neuropsychopharmacology. 2000;23:S5-S18.CrossRefPubMedGoogle Scholar
  7. 7.
    Egan TM, North RA. Both mu and delta opiate receptors exist on the same neuron.Science. 1981;214:923–924.CrossRefPubMedGoogle Scholar
  8. 8.
    Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. Heterodimerization of mu and delta opioid receptors: a role in opiate synergy.J Neurosci. 2000;20:RC110.PubMedPubMedCentralGoogle Scholar
  9. 9.
    George SR, Fan T, Xie Z, et al. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties.J Biol Chem. 2000;275:26128–26135.CrossRefPubMedGoogle Scholar
  10. 10.
    Levac BA, O'Dowd BF, George SR. Oligomerization of opioid receptors: generation of novel signaling units.Curr Opin Pharmacol. 2002;2:76–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Fan T, Varghese G, Nguyen T, Tse R, O'Dowd BF, George SR. A role for the distal carboxyl tails in generating the novel pharmacology and G protein activation profile of mu and delta opioid receptor hetero-oligomers.J Biol Chem. 2005;280:38478–38488CrossRefPubMedGoogle Scholar
  12. 12.
    Kieffer BL. Opioids: first lessons from knockout mice.Trends Pharmacol Sci. 1999;20:19–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Vaught JL, Takemori AE. Differential effects of leucine and methionine enkephalin on morphine-induced analgesia, acute tolerance and dependence.J Pharmacol Exp Ther. 1979;208:86–90.PubMedGoogle Scholar
  14. 14.
    Horan P, Tallarida RJ, Haaseth RC, Matsunaga TO, Hruby VJ, Porreca F. Antinociceptive interactions of opioid delta receptor agonists with morphine in mice: supra- and sub-additivity.Life Sci. 1992;50:1535–1541.CrossRefPubMedGoogle Scholar
  15. 15.
    He L, Lee NM. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord.J Pharmacol Exp Ther. 1998;285:1181–1186.PubMedGoogle Scholar
  16. 16.
    Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI. Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors.J Pharmacol Exp Ther. 1992;263:147–152.PubMedGoogle Scholar
  17. 17.
    Martin NA, Prather PL. Interaction of co-expressed mu- and delta-opioid receptors in transfected rat pituitary GH(3) cells.Mol Pharmacol. 2001;59:774–783.PubMedGoogle Scholar
  18. 18.
    Cahill CM, Morinville A, Lee MC, Vincent JP, Collier B, Beaudet A. Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception.J Neurosci. 2001;21:7598–7607PubMedGoogle Scholar
  19. 19.
    Coop A, Rice KC. Role of delta-opioid receptors in biological processes.Drug News Perspect. 2000;13:481–487.PubMedGoogle Scholar
  20. 20.
    Bishop MJ, Garrido DM, Boswell GE, et al. 3-(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxyben zyl)-N-alkyl-N-arylbenzamides: potent, non-peptidic agonists of both the mu and delta opioid receptors.J Med Chem. 2003;46:623–633.CrossRefPubMedGoogle Scholar
  21. 21.
    Lipkowski AW, Konecka AM, Sroczynska I. Double-enkephalins-synthesis, activity on guinea-pig ileum, and analgesic effect.Peptides. 1982;3:697–700.CrossRefPubMedGoogle Scholar
  22. 22.
    Horan PJ, Mattia A, Bilsky EJ, et al. Antinociceptive profile of biphalin, a dimeric enkephalin analog.J Pharmacol Exp Ther. 1993;265:1446–1454.PubMedGoogle Scholar
  23. 23.
    Silbert BS, Lipkowski AW, Cepeda MS, Szyfelbein SK, Osgood PF, Carr DB. Analgesic activity of a novel bivalent opioid peptide compared to morphine via different routes of administration.Agents Actions. 1991;33:382–387.CrossRefPubMedGoogle Scholar
  24. 24.
    Yamazaki M, Suzuki T, Narita M, Lipkowski AW. The opioid peptide analogue biphalin induces less physical dependence than morphine.Life Sci. 2001;69:1023–1028.CrossRefPubMedGoogle Scholar
  25. 25.
    Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP. Brain and spinal cord distribution of biphalin: correlation with opioid receptor density and mechanism of CNS entry.J Neurochem. 1997;69:1236–1245.CrossRefPubMedGoogle Scholar
  26. 26.
    Mollica A, Davis P, Ma SW, Porreca F, Lai J, Hruby VJ. Synthesis and biological activity of the first cyclic biphalin analogues.Bioorg Med Chem Lett. 2006;16:367–372.CrossRefPubMedGoogle Scholar
  27. 27.
    Bryant SD, Jinsmaa Y, Salvadori S, Okada Y, Lazarus LH. Dmt and opioid peptides: a potent alliance.Biopolymers. 2003;71:86–102.CrossRefPubMedGoogle Scholar
  28. 28.
    Balboni G, Guerrini R, Salvadori S, et al. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties.J Med Chem. 2002;45:713–720.CrossRefPubMedGoogle Scholar
  29. 29.
    Okada Y, Fujita Y, Motoyama T, et al. Structural studies of [2′,6′-dimethyl-L-tyrosinel]endomorphin-2 analogues: enhanced activity and cis orientation of the Dmt-Pro amide bond.Bioorg Med Chem. 2003;11:1983–1994.CrossRefPubMedGoogle Scholar
  30. 30.
    Fujita Y, Tsuda Y, Li T, et al. Development of potent bifunctional endomorphin-2 analogues with mixed mu-/delta-opioid agonist and delta-opioid antagonist properties.J Med Chem. 2004;47:3591–3599.CrossRefPubMedGoogle Scholar
  31. 31.
    Balboni G, Cocco MT, Salvadori S, et al. From the potent and selective mu opioid receptor agonist H-Dmt-D-Arg-Phe-Lys-NH(2) to the potent delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH.J Med Chem. 2005;48:5608–5611.CrossRefPubMedGoogle Scholar
  32. 32.
    Calderon SN, Coop A. SNC 80 and related delta opioid agonists.Curr Pharm Des. 2004;10:733–742.CrossRefPubMedGoogle Scholar
  33. 33.
    Eguchi M. Recent advances in selective opioid receptor agonists and antagonists.Med Res Rev. 2004;24:182–212.CrossRefPubMedGoogle Scholar
  34. 34.
    O'Neill SJ, Collins MA, Pettit HO, McNutt RW, Chang KJ. Antagonistic modulation between the delta opioid agonist BW373U86 and the mu opioid agonist fentanyl in mice.J Pharmacol Exp Ther. 1997;282:271–277.PubMedGoogle Scholar
  35. 35.
    Lee PH, McNutt RW, Chang KJ. A nonpeptidic delta opioid receptor agonist, BW373U86, attenuates the development and expression of morphine abstinence precipitated by naloxone in rat.J Pharmacol Exp Ther. 1993;267:883–887.PubMedGoogle Scholar
  36. 36.
    Su YF, McNutt RW, Chang KJ. Delta-opioid ligands reverse alfentanil-induced respiratory depression but not antino ciception.J Pharmacol Exp Ther. 1998;287:815–823PubMedGoogle Scholar
  37. 37.
    Gengo PJ, Pettit HO, O'Neill SJ, et al. DIP-3290 [(+)-3-((alpha-R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. I. A mixed opioid agonist with potent antinociceptive activity.J Pharmacol Exp Ther. 2003;307:1221–1226.CrossRefPubMedGoogle Scholar
  38. 38.
    Gengo PJ, Pettit HO, O'Neill SJ, Su YF, McNutt R, Chang KJ. DPI-3290[(+)-3-((alpha-R)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl)-N-(3-fluorophenyl)-N-methylbenzamide]. II. A mixed opioid agonist with potent antinociceptive activity and limited effects on respiratory function.J Pharmacol Exp Ther. 2003;307:1227–1233.CrossRefPubMedGoogle Scholar
  39. 39.
    Lattanzi R, Spetea M, Schullner F, et al. Synthesis and biological evaluation of 14-alkoxymorphinans. 22.(1) Influence of the 14-alkoxy group and the substitution in position 5 in 14-alkoxymorphinan-6-ones on in vitro and in vivo activities.J Med Chem. 2005;48:3372–3378.CrossRefPubMedGoogle Scholar
  40. 40.
    Grundt P, Martinez-Bermejo F, Lewis JW, Husbands SM. Opioid binding and in vitro profiles of a series of 4-hydroxy-3-methoxyindolomorphinans. Transformation of a delta-selective ligand into a high affinity kappa-selective ligand by introduction of a 5, 14-substituted bridge.J Med Chem. 2003;46:3174–3177.CrossRefPubMedGoogle Scholar
  41. 41.
    Grundt P, Jales AR, Traynor JR, Lewis JW, Husbands SM. 14-amino, 14-alkylamino, and 14-acylamino analogs of oxymorphindole. Differential effects on opioid receptor binding and functional profiles.J Med Chem. 2003;46:1563–1566.CrossRefPubMedGoogle Scholar
  42. 42.
    Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice.J Pharmacol Exp Ther. 1991;258:299–303.PubMedGoogle Scholar
  43. 43.
    Hepburn MJ, Little PJ, Gingras J, Kuhn CM. Differential effects of naltrindole on morphine-induced tolerance and physical dependence in rats.J Pharmacol Exp Ther. 1997;281:1350–1356.PubMedGoogle Scholar
  44. 44.
    Fundytus ME, Schiller PW, Shapiro M, Weltrowska G, Coderre TJ. Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi].Eur J Pharmacol. 1995;286:105–108.CrossRefPubMedGoogle Scholar
  45. 45.
    Kest B, Lee CE, McLemore GL, Inturrisi CE. An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice.Brain Res Bull. 1996;39:185–188.CrossRefPubMedGoogle Scholar
  46. 46.
    Suzuki T, Ikeda H, Tsuji M, Misawa M, Narita M, Tseng LF. Antisense oligodeoxynucleotide to delta opioid receptors attenuates morphine dependence in mice.Life Sci. 1997;61:PL165-PL170.CrossRefGoogle Scholar
  47. 47.
    Sanchez-Blazquez P, Garcia-Espana A, Garzon J. Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2 opioid receptors.J Pharmacol Exp Ther. 1997;280:1423–1431.PubMedGoogle Scholar
  48. 48.
    Zhu Y, King MA, Schuller AG, et al. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice.Neuron. 1999;24:243–252CrossRefPubMedGoogle Scholar
  49. 49.
    Roy S, Guo X, Kelschenbach J, Liu Y, Loh HH. In vivo activation of a mutant mu-opioid receptor by naltrexone produces a potent analgesic effect but no tolerance: role of mu-receptor activation and delta-receptor blockade in morphine tolerance.J Neurosci. 2005;25:3229–3233.CrossRefPubMedGoogle Scholar
  50. 50.
    Freye E, Latasch L, Portoghese PS. The delta receptor is involved in sufentanil-induced respiratory depression-opioid subreceptors mediate different effects.Eur J Anaesthesiol. 1992;9:457–462.PubMedGoogle Scholar
  51. 51.
    Foxx-Orenstein AE, Jin JG, Grider JR. 5-HT4 receptor agonists and delta-opioid receptor antagonists act synergistically to stimulate colonic propulsion.Am J Physiol. 1998;275:G979-G983.PubMedGoogle Scholar
  52. 52.
    Schmidt R, Vogel D, Mrestani-Klaus C, et al. Cyclic betacasomorphin analogues with mixed mu agonist/delta antagonist properties: synthesis, pharmacological characterization, and conformational aspects.J Med Chem. 1994;37:1136–1144.CrossRefPubMedGoogle Scholar
  53. 53.
    Schiller PW, Fundytus ME, Merovitz L, et al. The opioid mu agonist/delta antagonist DIPP-NH(2)[Psi] produces a potent analgesic effect, no physical dependence, and less tolerance than morphine in rats.J Med Chem. 1999;42:3520–3526.CrossRefPubMedGoogle Scholar
  54. 54.
    Weltrowska G, Lemieux C, Chung NN, Schiller PW. A chimeric opioid peptide with mixed mu agonist/delta antagonist properties.J Pept Res. 2004;63:63–68.CrossRefPubMedGoogle Scholar
  55. 55.
    Santagada V, Balboni G, Caliendo G, et al. Assessment of substitution in the second pharmacophore of Dmt-Tic analogues.Bioorg Med Chem Lett. 2000;10:2745–2748.CrossRefPubMedGoogle Scholar
  56. 56.
    Salvadori S, Guerrini R, Balboni G, et al. Further studies on the Dmt-Tic pharmacophore: hydrophobic substituents at the C-terminus endow delta antagonists to manifest mu agonism or mu antagonism.J Med Chem. 1999;42:5010–5019.CrossRefPubMedGoogle Scholar
  57. 57.
    Balboni G, Salvadori S, Guerrini R, et al. Potent delta-opioid receptor agonists containing the Dmt-Tic pharmacophore.J Med Chem. 2002;45:5556–5563.CrossRefPubMedGoogle Scholar
  58. 58.
    Ananthan S, Johnson CA, Carter RL, et al. Synthesis, opioid receptor binding, and bioassay of naltrindole analogues substituted in the indolic benzene moiety.J Med Chem. 1998;41:2872–2881.CrossRefPubMedGoogle Scholar
  59. 59.
    Ananthan S 3rd, Kezar HS 3rd, Carter RL, et al. Synthesis, opioid receptor binding, and biological activities of naltrexone-derived pyrido- and pyrimidomorphinans.J Med Chem. 1999;42:3527–3538.CrossRefPubMedGoogle Scholar
  60. 60.
    Wells JL, Bartlett JL, Ananthan S, Bilsky EJ. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antin ociceptive tolerance and attenuates morphine physical dependence.J Pharmacol Exp Ther. 2001;297:597–605.PubMedGoogle Scholar
  61. 61.
    Xu H, Lu YF, Rice KC, Ananthan S, Rothman RB. SoRI 9409, a nonpeptide opioid mu receptor agonist/delta receptor antagonist, fails to stimulate [35S]-GTP-gamma-S binding at cloned opioid receptors.Brain Res Bull. 2001;55:507–511.CrossRefPubMedGoogle Scholar
  62. 62.
    Ananthan S, Khare NK, Saini SK, et al. Identification of opioid ligands possessing mixed mu agonist/delta antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone.J Med Chem. 2004;47:1400–1412.CrossRefPubMedGoogle Scholar
  63. 63.
    Srivastava SK, Husbands SM, Aceto MD, Miller CN, Traynor JR, Lewis JW. 4′-Arylpyrrolomorphinans: effect of a pyrrolo-N-benzyl substituent in enhancing delta-opioid antagonist activity.J Med Chem. 2002;45:537–540.CrossRefPubMedGoogle Scholar
  64. 64.
    Portoghese PS. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists.Trends Pharmacol Sci. 1989;10:230–235.CrossRefPubMedGoogle Scholar
  65. 65.
    Portoghese PS, Edward E. Smissman-Bristol-Myers Squibb Award Address. The role of concepts in structure-activity relationship studies of opioid ligands.J Med Chem. 1992;35:1927–1937.CrossRefPubMedGoogle Scholar
  66. 66.
    Portoghese PS. From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes.J Med Chem. 2001;44:2259–2269.CrossRefPubMedGoogle Scholar
  67. 67.
    Daniels DJ, Kulkarni A, Xie Z, Bhushan RG, Portoghese PS. A bivalent ligand (KDAN-18) containing delta-antagonist and kappa-agonist pharmacophores bridges delta2 and kappal opioid receptor phenotypes.J Med Chem. 2005;48:1713–1716.CrossRefPubMedGoogle Scholar
  68. 68.
    Lenard NR, Moore JB, Daniels DJ, Portoghese PS, Roerig SC. Bivalent Ligands With Mu Agonist and Delta Antagonist Pharmacophores: Spacer Length Dependence of Tolerance and Physical Dependence Suggests Associated Mu and Delta Receptors [abstract].Neuroscience [Society for Neuroscience, Abstract Viewer and Itinerary Planner]. 2004: Abstract 406.10.Google Scholar
  69. 69.
    Daniels DJ, Lenard NR, Etienne CL, et al. Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacopores in a bivalent ligand series.Proc Natl Acad Sci USA. 2005;102:19208–19213.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  1. 1.Organic Chemistry DepartmentSouthern Research InstituteBirmingham

Personalised recommendations