The AAPS Journal

, Volume 8, Issue 1, pp E101–E111

Cytochrome P450s and other enzymes in drug metabolism and toxicity

Article

Abstract

The cytochrome P450 (P450) enzymes are the major catalysts involved in the metabolism of drugs. bioavailability and toxicity are 2 of the most common barriers in drug development today, and P450 and the conjugation enzymes can influence these effects. The toxicity of drugs can be considered in 5 contexts: on-target toxicity, hypersensitivity and immunological reactions, off-target pharmacology, bioactivation to reactive intermediates, and idiosyncratic drug reactions. the chemistry of bioactivation is reasonably well understood, but the mechanisms underlying biological responses are not. In the article we consider what fraction of drug toxicity actually involves metabolism, and we examine how species and human interindividual variations affect pharmacokinetics and toxicity.

Keywords

Cytochrome P450 drug metabolism toxicity reactive metabolites 

References

  1. 1.
    Guengerich FP. Cytochrome P450: what have we learned and what are the future issues? 2003 North American Region ISSX Scientific Achievement Award.Drug Metab Rev. 2004;36:159–197.CrossRefPubMedGoogle Scholar
  2. 2.
    Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, ed.Cytochrome P450: Structure, Mechanism, and Biochemistry. 3rd ed. New York, NY: Kluwer Academic/Plenum Press; 2005:377–531.CrossRefGoogle Scholar
  3. 3.
    Guengerich FP, Wu Z-L, Bartleson CJ. Function of human cytochrome P450s: characterization of the remaining orphans.Biochem Biophys Res Commun. 2005;338:465–469.CrossRefPubMedGoogle Scholar
  4. 4.
    Nebert DW, Russell DW. Clinical importance of the cytochromes P450.Lancet. 2002;360:115–1162.CrossRefGoogle Scholar
  5. 5.
    Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure AUCi/AUC ratios.Drug Metab Dispos. 2004;32:1201–1208.CrossRefPubMedGoogle Scholar
  6. 6.
    Wienkers LC, Heath TG. Predictingin vivo drug interactions fromin vitro drug discovery data.Nat Rev Drug Discov. 2005;4:825–833.CrossRefPubMedGoogle Scholar
  7. 7.
    Guengerich FP. Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidations and related reactions.Arch Biochem Biophys. 2003;409:59–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Josephy PD, Guengerich FP, Miners JO. Phase 1 and phase 2 drug metabolism: terminology that we should phase out.Drug Metab Dispos. 2005;37:579–584.Google Scholar
  9. 9.
    Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens.Proc Natl Acad Sci USA. 1997;94:10367–10372.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Monks TJ, Anders MW, Dekant W, Stevens JL, Lau SS, van Bladeren PJ. Glutathione conjugate mediated toxicities.Toxicol Appl Pharmacol. 1990;106:1–19.CrossRefPubMedGoogle Scholar
  11. 11.
    Wood AW, Levin W, Lu AYH, et al. Metabolism of benzo[a]pyrene and benzo[a]pyrene derivatives to mutagenic products by highly purified hepatic microsomal enzymes.J Biol Chem. 1976;251:4882–4890.PubMedGoogle Scholar
  12. 12.
    Miyata M, Kudo G, Lee YH, et al. Targeted disruption of the microsomal epoxide hydrolase gene: microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene.J Biol Chem. 1999;274:23963–23968.CrossRefPubMedGoogle Scholar
  13. 13.
    Guengerich FP. Activation of dihaloalkanes by thiol-dependent mechanisms.J Biochem Mol Biol. 2003;36:20–27.PubMedGoogle Scholar
  14. 14.
    Miller JA, Surh YJ. Historical perspectives on conjugation-dependent bioactivation of foreign compounds.Adv Pharmacol. 1994;27:1–16.CrossRefPubMedGoogle Scholar
  15. 15.
    Liebler DC, Guengerich FP. Elucidating mechanisms of drug-induced toxicity.Nat Rev Drug Discov. 2005;4:410–420.CrossRefPubMedGoogle Scholar
  16. 16.
    Johnson TE, Zhang X, Bleicher KB, et al. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone.Toxicol Appl Pharmacol. 2004;200:239–250.CrossRefGoogle Scholar
  17. 17.
    Uetrecht JP. New concepts in immunology relevant to idiosyncratic drug reactions: the “danger hypothesis” and innate immune system.Chem Res Toxicol. 1999;12:387–395.CrossRefPubMedGoogle Scholar
  18. 18.
    Kalgutkar AS, Soglia JR. Minimising the potential for metabolic activation in drug discovery.Expert Opin Drug Metab Toxicol. 2005;1:91–141.CrossRefPubMedGoogle Scholar
  19. 19.
    Yun C-H, Okerholm RA, Guengerich FP. Oxidation of the antihistminic drug terfenadine in human liver microsomes: role of cytochrome P450 3A(4) in N-dealkylation and C-hydroxylation.Drug Metab Dispos. 1993;21:403–409.PubMedGoogle Scholar
  20. 20.
    Woosley RL, Chen Y, Freiman JR, Gillis RA. Mechanism of the cardiotoxic actions of terfenadine.JAMA. 1993;269:1532–1536.CrossRefPubMedGoogle Scholar
  21. 21.
    Thompson D, Oster G. Use of terfenadine and contraindicated drugs.JAMA. 1996;275:1339–1341.CrossRefPubMedGoogle Scholar
  22. 22.
    Kivistö KT, Neuvonen PJ, Klotz U. Inhibition of terfenadine metabolism: pharmacokinetic and pharmacodynamic consequences.Clin Pharmacokinet. 1994;27:1–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Bourdi M, Larrey D, Nataf J, et al. A new anti-liver endoplasmic reticulum antibody directed against human cytochrome P-450 IA2: a specific marker of dihydralazine-induced hepatitis.J Clin Invest. 1990;85:1967–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kalgutkar AS, Gardner I, Obach RS, et al. A comprehensive listing of bioactivation pathways of organic functional groups.Curr Drug Metab. 2005;6:161–225.CrossRefPubMedGoogle Scholar
  25. 25.
    Guengerich FP. Principles of covalent binding of reactive metabolites and examples of activation ofbis-electrophiles by conjugation.Arch Biochem Biophys. 2005;433:369–378.CrossRefPubMedGoogle Scholar
  26. 26.
    Borzelleca JF. Profiles in toxicology. Paracelsus: herald of modern toxicology.Toxicol Sci. 2000;53:2–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis, II: role of covalent binding in vivo.J Pharmacol Exp Ther. 1973;187:195–202.PubMedGoogle Scholar
  28. 28.
    Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development.Chem Res Toxicol. 2004;17:3–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Streeter AJ, Bjorge SM, Axworthy DB, Nelson SD, Baillie TA. The microsomal metabolism and site of covalent binding to protein of 3′-hydroxyacetanilide, a nonhepatotoxic positional isomer of acetaminophen.Drug Metab Dispos. 1984;12:565–576.PubMedGoogle Scholar
  30. 30.
    Roberts SA, Price VF, Jollow DJ. Acetaminophen structure-toxicity studies:in vivo covalent binding of a nonhepatotoxic analog, 3-hydroxyacetanilide.Toxicol Appl Pharmacol. 1990;105:195–208.CrossRefPubMedGoogle Scholar
  31. 31.
    Qiu Y, Benet LZ, Burlingame AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophenin vivo in mice using two-dimensional gel electrophoresis and mass spectrometry.J Biol Chem. 1998;273:17940–17953.CrossRefPubMedGoogle Scholar
  32. 32.
    Park JYK, Shigenaga MK, Ames BN. Induction of cytochrome P4501A by 2,3,7,8-tetrachlorodibenzo-p-dioxin or indolo(3,2-b) carbazole is associated with oxidative DNA damage.Proc Natl Acad Sci USA. 1996;93:2322–2327.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cederbaum AI, Wu D, Mari M, Bai J. CYP2E1-dependent toxicity and oxidative stress in HepG2 cells.Free Radic Biol Med. 2001;31:1539–1543.CrossRefPubMedGoogle Scholar
  34. 34.
    Henderson CJ, Otto DM, Carrie D, et al. Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase.J Biol Chem. 2003;278:13480–13486.CrossRefPubMedGoogle Scholar
  35. 35.
    Gu J, Weng Y, Zhang QY, et al. Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase.J Biol Chem. 2003;278:25895–25901.CrossRefPubMedGoogle Scholar
  36. 36.
    Guengerich FP, Arneson KO, Williams KM, Deng Z, Harris TM. Reaction of aflatoxin B1 oxidation products with lysine.Chem Res Toxicol. 2002;15:780–792.CrossRefPubMedGoogle Scholar
  37. 37.
    Johnson WW, Harris TM, Guengerich FP. Kinetics and mechanism of hydrolysis of aflatoxin B1 exo-8,9-oxide and rearrangement of the dihydrodiol.J Am Chem Soc. 1996;118:8213–8220.CrossRefGoogle Scholar
  38. 38.
    Johnson WW, Guengerich FP. Reaction of aflatoxin B1 exo-8,9-epoxide with DNA: kinetic analysis of covalent binding and DNA-induced hydrolysis.Proc Natl Acad Sci USA. 1997;94:6121–6125.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Guengerich FP, Cai H, McMahon M, et al. Reduction of aflatoxin B1 dialdehyde by rat and human aldo-keto reductases.Chem Res Toxicol. 2001;14:727–737.CrossRefPubMedGoogle Scholar
  40. 40.
    Stewart RD, Dodd HC, Gay HH, Erley DS. Experimental human exposure to trichloroethylene.Arch Environ Health. 1970;20:64–71.CrossRefPubMedGoogle Scholar
  41. 41.
    Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention. Toxicological Profile for Trichloroethylene. Available at: http://www.atsdr.cdc.gov/toxprofiles/tp19.html. Accessed February 16, 2006.Google Scholar
  42. 42.
    Huff JE. New evidence on the old problems of trichloroethylene. 1971;40:25–33.Google Scholar
  43. 43.
    Lockey JE, Kelly CR, Cannon GW, Colby TV, Aldrich V, Livingston GK. Progressive systemic sclerosis associated with exposure to trichloroethylene.J Occup Med. 1987;29:493–496.PubMedGoogle Scholar
  44. 44.
    Kilburn KH. Is neurotoxicity associated with environmental trichloroethylene (TCE)?Arch Environ Health. 2002;57:113–120.CrossRefPubMedGoogle Scholar
  45. 45.
    Miller RE, Guengerich FP. Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide.Biochemistry. 1982;21:1090–1097.CrossRefPubMedGoogle Scholar
  46. 46.
    Cai H, Guengerich FP. Mechanism of aqueous decomposition of trichloroethylene oxide.J Am Chem Soc. 1999;121:11656–11663.CrossRefGoogle Scholar
  47. 47.
    Yoshioka T, Krauser JA, Guengerich FP. Microsomal oxidation of tribromoethylene and reactions of tribromoethylene oxide.Chem Res Toxicol. 2002;15:1414–1420.CrossRefPubMedGoogle Scholar
  48. 48.
    Cai H, Guengerich FP. Reaction of trichloroethylene oxide with proteins and DNA: instability of adducts and modulation of functions.Chem Res Toxicol. 2001;14:54–61.CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshioka T, Krauser JA, Guengerich FP. Tetrachloroethylene oxide: hydrolytic products and reactions with phosphate and lysine.Chem Res Toxicol. 2002;15:1096–1105.CrossRefPubMedGoogle Scholar
  50. 50.
    Turesky RJ, Constable A, Richoz J, et al. Differences in activation of heterocyclic aromatic amines by rat and human liver microsomes and by rat and human cytochromes P450 1A2.Chem Res Toxicol. 1998;11:925–936.CrossRefPubMedGoogle Scholar
  51. 51.
    Reitz RH, Mendrala A, Guengerich FP.In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically based pharmacokinetic models.Toxicol Appl Pharmacol. 1989;97:230–246.CrossRefPubMedGoogle Scholar
  52. 52.
    Kirman CR, Hays SM, Gargas ML, et al. Using physiologically based pharmacokinetic modeling to assess non-linearity in the dose-response relationship for methylene chloride carcinogenesis.Toxicologist. 1999;48:83.Google Scholar
  53. 53.
    Rish W, Kirman CR, Hays SM, et al. Developing a physiologically based pharmacokinetic model to describe methylene chloride kinetics at the subcellular level.Toxicologist. 1999;48:143.Google Scholar
  54. 54.
    Dorne JL, Walton K, Slob W, Renwick AG. Human variability in polymorphic CYP2D6 metabolism: is the kinetic default uncertainty factor adequate?Food Chem Toxicol. 2002;40:1633–1656.CrossRefPubMedGoogle Scholar
  55. 55.
    Dorne JL, Walton K, Renwick AG. Human variability in CYP3A4 metabolism and CYP3A4-related uncertainty factors for risk assessment.Food Chem Toxicol. 2003;41:201–224.CrossRefPubMedGoogle Scholar
  56. 56.
    Walgren JL, Mitchell MD, Thompson DC. Role of metabolism in drug-induced idiosyncratic hepatotoxicity.Crit Rev Toxicol. 2005;35:325–361.CrossRefPubMedGoogle Scholar
  57. 57.
    Food and Drug Administration, Center for Drug Evaluation and Research. Draft: Guidance for industry: Safety testing of drug metabolites. Available at: http://www.fda.gov/cder/guidance/6366dft.htm. Accessed February 16, 2006.Google Scholar
  58. 58.
    Kupfer D, Bulger WH. Metabolic activation of pesticides with proestrogenic activity.Fed Proc. 1987;46:1864–1869.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  1. 1.Department of biochemistry and Center in Molecular ToxicologyVanderbilt University School of MedicineNashville

Personalised recommendations