The AAPS Journal

, Volume 7, Issue 4, pp E834–E846 | Cite as

Mechanisms of drug-induced delayed-type hypersensitivity reactions in the skin



Cutaneous drug reactions (CDRs) are the most commonly reported adverse drug reactions. These reactions can range from mildly discomforting to life threatening. CDRs can arise either from immunological or nonimmunological mechanisms, though the preponderance of evidence suggests an important role for immunological responses. Some cutaneous eruptions appear shortly after drug intake, while others are not manifested until 7 to 10 days after initiation of therapy and are consistent with delayed-type hypersensitivity. This review discusses critical steps in the initiation of delayed-type hypersensitivity reactions in the skin, which include protein haptenation, dendritic cell activation/migration and T-cell propagation. Recently, an alternative mechanism of drug presentation has been postulated that does not require bioactivation of the parent drug or antigen processing to elicit a drug-specific T-cell response. This review also discusses the role of various immune-mediators, such as cytokines, nitric oxide, and reactive oxygen species, in the development of delayed-type drug hypersensitivity reactions in skin. As keratinocytes have been shown to play a crucial role in the initiation and propagation of cutaneous immune responses, we also discuss the means by which these cells may initiate or modulate CDRs.


cutaneous drug reactions delayed-type hypersensitivity dendritic cells keratinocytes T-cells cytokines 


  1. 1.
    Pirmohamed M, Breckenridge A, Kitteringham N, et al. Adverse drug reactions.BMJ. 1998;316:1295–1298.PubMedGoogle Scholar
  2. 2.
    Vervloet D, Durham S. Adverse reactions to drugs.BMJ. 1998;316:1511–1514.PubMedGoogle Scholar
  3. 3.
    Naisbitt DJ. Drug hypersensitivity reactions in skin: understanding mechanisms and the development of diagnostic and predictive tests.Toxicology. 2004;194:179–196.PubMedCrossRefGoogle Scholar
  4. 4.
    Svensson CK, Cowen EW, Gaspari AA. Cutaneous drug reactions.Pharmacol Rev. 2001;53:357–379.PubMedGoogle Scholar
  5. 5.
    Romano A, Torres MJ, Quaratino D, et al. Diagnostic evaluation of delayed hypersensitivity to systematically administered drugs.Allergy. 1999;54:23–27.PubMedCrossRefGoogle Scholar
  6. 6.
    Saint-Mezard P, Rosieres A, Krasteva M, et al. Allergic contact dermatitis.Eur J Dermatol., 2004;14:284–295.PubMedGoogle Scholar
  7. 7.
    Sertoli A, Francalanci S, Acciai MC, et al. Epidemiological survey of contact dermatitis in Italy (1984–1993) by GIRDCA (Gruppo Italiano Ricerca Dermatiti da Contatto e Ambientali).Am J Contact Dermat. 1999,10:18–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Matulich J, Sullivan J. A temporary henna tattoo causing hair and clothing dye allergy.Contact Dermatitis. 2005;53:33–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Militello G, James W. Lyral: a fragrance allergen.Dermatitis. 2005;16:41–44.PubMedGoogle Scholar
  10. 10.
    Bonamonte D, Foti C, Antelmi AR, et al. Nickel contact allergy and menstrual cycle.Contact Dermatitis. 2005;52:309–313.PubMedCrossRefGoogle Scholar
  11. 11.
    Li LY Jr, Cruz PD Jr. Allergic contact dematitis: pathophysiology applied to future therapy.Dermatol Ther. 2004;17:219–223.PubMedCrossRefGoogle Scholar
  12. 12.
    Jensen C, Lisby S, Larsen J, et al. Characterization of lymphocyte subpopulations and cytokine profiles in peripheral blood of nickel-sensitive individuals with systemic contact dermatitis after oral nickel exposure.Contact Dermatitis. 2004;50:31–38.PubMedCrossRefGoogle Scholar
  13. 13.
    Naldi L, Conforti A, Venegoni M, et al. Cutaneous reactions to drugs: an analysis of spontaneous reports in 4 Italian regions.Br J Clin Pharmacol. 1999;48:839–846.PubMedCrossRefGoogle Scholar
  14. 14.
    Shepherd GM. Hypersensitivity reactions to drugs: evaluation and management.Mt Sinai J Med. 2003;70:113–125.PubMedGoogle Scholar
  15. 15.
    Knowles SR, Shapiro LE, Shear NH. Anticonvulsant hypersensitivity syndrome: incidence, prevention, and management.Drug Saf. 1999;21:489–501.PubMedCrossRefGoogle Scholar
  16. 16.
    Aronson JK, Ferner RE. Joining the DoTS: new approach to classifying adverse drug reactions.BMJ. 2003;327:1222–1225.PubMedCrossRefGoogle Scholar
  17. 17.
    Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management.Lancet. 2000;356:1255–1259.PubMedCrossRefGoogle Scholar
  18. 18.
    Hari Y, Frutig-Schnyder K, Hurni M, et al. T cell involvement in cutaneous drug eruptions.Clin Exp Allergy. 2001;31:1398–1408.PubMedCrossRefGoogle Scholar
  19. 19.
    Hertl M, Merk HF. Lymphocyte activation in cutaneous drug reactions.J Invest Dermatol. 1995;105:95S-98S.PubMedCrossRefGoogle Scholar
  20. 20.
    Pichler WJ, Schnyder B, Zanni MP, et al. Role of T cells in drug allergies.Allergy. 1998;53:225–232.PubMedCrossRefGoogle Scholar
  21. 21.
    Bessmertny O, Hatton R, Gonzalez-Peralta R. Antiepileptic hypersensitivity syndrome in children.Ann Pharmacother. 2001;35:533–538.PubMedCrossRefGoogle Scholar
  22. 22.
    Yawalkar N. Drug-induced exanthems.Toxicology. 2005;209:131–134.PubMedCrossRefGoogle Scholar
  23. 23.
    Merk HF. Diagnosis of drug hypersensitivity: lymphocyte transformation test and cytokines.Toxicology. 2005;209:217–220.PubMedCrossRefGoogle Scholar
  24. 24.
    Britschgi M, Steiner UC, Schmid S, et al. T-cell involvement in drug-induced acute generalized exanthematous pustulosis.J Clin Invest. 2001;107:1433–1441.PubMedCrossRefGoogle Scholar
  25. 25.
    Miyauchi H, Hosokawa H, Akaeda T, et al. T-cell subsets in drug-induced toxic epidermal necrolysis: possible pathogenic mechanism induced by CD8-positive T cells.Arch Dermatol. 1991;127:851–855.PubMedCrossRefGoogle Scholar
  26. 26.
    Pichler WJ. T cells in drug allergy.Curr Allergy Asthma Rep. 2002;2:9–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaplan MH, Hall WW, Susin M, et al. Syndrome of severe skin disease, eiosinophilia, and dermatopathic lymphadenopathy in patients with HTLV-II complicating human immunodeficiency virus infection.Am J Med. 1991;91:300–309.PubMedCrossRefGoogle Scholar
  28. 28.
    Mauri-Hellweg D, Bettens F, Mauri D, et al. Activation of drug-specific CD4+ and CD8+T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine.J Immunol. 1995;155:462–472.PubMedGoogle Scholar
  29. 29.
    Schnyder B, Burkhart C, Schnyder-Frutig K, et al. Recognition of sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from allergic individuals.J Immunol. 2000;164:6647–6654.PubMedGoogle Scholar
  30. 30.
    Zanni MP, von Greyerz S, Schnyder B, et al. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes.J Clin Invest. 1998;102:1591–1598.PubMedCrossRefGoogle Scholar
  31. 31.
    Naisbitt DJ, Farrell J, Wong G, et al. Characterization of drug-specific T cells in lamotrigine hypersensitivity.J Allergy Clin Immunol. 2003;111:1393–1403.PubMedCrossRefGoogle Scholar
  32. 32.
    Nassif A, Bensussan A, Boumsell L, et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells.J Allergy Clin Immunol. 2004;114:1209–1215.PubMedCrossRefGoogle Scholar
  33. 33.
    Nassif A, Bensussan A, Dorothee G, et al. Drug specific cytotoxic T cells in the skin lesions of a patient with toxic epidermal necrolysis.J Invest Dermatol. 2002;118:728–733.PubMedCrossRefGoogle Scholar
  34. 34.
    Schnyder B, Frutig K, Mauri-Hellweg D, et al. T-cell-mediated cytotoxicity against keratinocytes in sulfamethoxazol-induced skin reaction.Clin Exp Allergy. 1998;28:1412–1417.PubMedCrossRefGoogle Scholar
  35. 35.
    Kimbe I, Basketter DA, Gerberick GF, et al. Allergic contact dermatitis.Int Immunopharmacol. 2002;2:201–211.CrossRefGoogle Scholar
  36. 36.
    De Smedt AC, Van Den Heuvel RL, Van Tendeloo VF, et al. Capacity of CD34+ progenitor-derived dendritic cells to distinguish between sensitizers and irritants.Toxicol Lett. 2005;156:377–389.PubMedCrossRefGoogle Scholar
  37. 37.
    Pichler WJ, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity.Allergy. 2004;59:809–820.PubMedCrossRefGoogle Scholar
  38. 38.
    Romani N, Holzmann S, Tripp CH, et al. Langerhans cells-dendritic cells of the epidermis.APMIS. 2003;111:725–740.PubMedCrossRefGoogle Scholar
  39. 39.
    Banerjee G, Damodaran A, Devi N, et al. Role of keratinocytes in antigen presentation and polarization of human T lymphocytes.Scand J Immunol. 2004;59:385–394.PubMedCrossRefGoogle Scholar
  40. 40.
    Park BK, Kitteringham NR, Powell H, et al. Advances in molecular toxicology: towards understanding idiosyncratic drug toxicity.Toxicology. 2000;153:39–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Ju C, Uetrecht JP. Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate.J Pharmacol Exp Ther. 1999;288;51–56.PubMedGoogle Scholar
  42. 42.
    Madden S, Maggs JL, Park BK. Broactivation of carbamazepine in the rat in vivo: evidence for the formation of reactive arene oxide(s).Drug Metab Dispos. 1996;24:469–479.PubMedGoogle Scholar
  43. 43.
    Cribb AE, Miller M, Tesoro A, et al. Peroxidase-dependent oxidation of sulfonamides by monocytes and neutrophils from humans and dogs.Mol Pharmacol. 1990;38:744–751.PubMedGoogle Scholar
  44. 44.
    Cribb AE, Spielberg SP, Griffin GP. N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes.Drug Metab Dispos. 1995;23:406–414.PubMedGoogle Scholar
  45. 45.
    Uetrecht JP, Shear, NH, Zahid N. N-chlorination of sulfamethoxazole and dapsone by the myeloperoxidase system.Drug Metab Dispos. 1993;21:830–834.PubMedGoogle Scholar
  46. 46.
    Winter HR, Wang Y, Unadkat JD. CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone.Drug Metab Dispos. 2000:28:865–868.PubMedGoogle Scholar
  47. 47.
    Mitra AK, Thummel KE, Kalhorn TF, et al. Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo.Clin Pharmacol Ther. 1995;58:556–566.PubMedCrossRefGoogle Scholar
  48. 48.
    Reilly TP, Lash LH, Doll MA, et al. A role for bioactivation and covalent binding within epidermal keratinocytes in sulfonamide-induced cutaneous drug reactions.J Invest Dermatol. 2000;114:1164–1173.PubMedCrossRefGoogle Scholar
  49. 49.
    Yan Z, Li J, Huebert N, et al. Detection of a novel reactive metabolite of diclofenac: evidence for CYP2C9-mediated bioactivation via arene oxides.Drug Metab Dispos. 2005;33:706–713.PubMedCrossRefGoogle Scholar
  50. 50.
    Kumar S, Samuel K, Subramanian R, et al. Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide.J Pharmacol Exp Ther 2002; 303:969–978.PubMedCrossRefGoogle Scholar
  51. 51.
    Masubuchi Y, Umeda S, Igarashi S, et al. Participation of the CYP2D subfamily in lidocaine 3-hydroxylation and formation of a reactive metabolite covalently bound to liver microsomal protein in rats.Biochem Pharmacol. 1993;46:1867–1869.PubMedCrossRefGoogle Scholar
  52. 52.
    Walsh JS, Reese MJ, Thurmond LM. The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes.Chem Biol Interact. 2002;142:135–154.PubMedCrossRefGoogle Scholar
  53. 53.
    Cuttle L, Munns AJ, Hogg NA,et al. Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation.Drug Metab Dispos. 2000;28:945–950.PubMedGoogle Scholar
  54. 54.
    Uetrecht JP. Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide.J Pharmacol Exp Ther. 1985;232:420–425.PubMedGoogle Scholar
  55. 55.
    Swanson HI. Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective.Chem Biol Interact. 2004;149:69–79.PubMedCrossRefGoogle Scholar
  56. 56.
    Janmohamed A, Dolphin CT, Phillips IR, et al. Quantification and cellular localization of expression in human skin of genes encoding flavin-containing monooxygenases and cytochromes P450.Biochem Pharmacol. 2001;62:777–786.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee JL, Mukhtar H, Bickers DR, et al. Cyclooxygenases in the skin: pharmacological and toxicological implications.Toxicol Appl Pharmacol. 2003;192:294–306.PubMedCrossRefGoogle Scholar
  58. 58.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity.Nature. 1998;392:245–252.PubMedCrossRefGoogle Scholar
  59. 59.
    Randolph GJ. Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators.Semin Immunol. 2001;13:267–274.PubMedCrossRefGoogle Scholar
  60. 60.
    Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels.Nat Rev Immunol. 2005;5:617–628.PubMedCrossRefGoogle Scholar
  61. 61.
    Kimber I, Cumberbatch M. Dendritic cells and cutaneous immune responses to chemical allergens.Toxicol Appl Pharmacol. 1992;117:137–146.PubMedCrossRefGoogle Scholar
  62. 62.
    Kimber I, Cumberbatch M, Betts CJ, et al. Dendritic cells and skin sensitization hazard assessment.Toxicol In Vitro. 2004;18:195–202.PubMedCrossRefGoogle Scholar
  63. 63.
    Shortman K, Liu YJ. Mouse and human dendritic cell subtypes.Nat Rev Immunol. 2002;2:151–161.PubMedCrossRefGoogle Scholar
  64. 64.
    Becker D, Mohamadzadeh M, Reske K, et al. Increased level of intracellular MHC class II molecules in murine Langerhans cells following in vivo and in vitro administration of contact allergens.J Invest Dermatol. 1992;99:545–549.PubMedCrossRefGoogle Scholar
  65. 65.
    Girolomoni G, Simon JC, Bergstresser PR, et al. Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short-term culture.J Immunol. 1990;145:2820–2826.PubMedGoogle Scholar
  66. 66.
    Neisius U, Brand P, Plochmann S, et al. Detection of increased tyrosine phosphorylation in murine Langerhans cells after stimulation with contact sensitizers.Arch Dermatol Res. 1999;291:22–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Aiba S, Katz SI. Phenotypic and functional characteristics of in vivo-activated Langerhans cells.J Immunol. 1990;145:2791–2796.PubMedGoogle Scholar
  68. 68.
    Verrier AC, Schmitt D, Staquet MJ. Fragrance and contact allergens in vitro modulate the HLA-DR and E-cadherin expression on human epidermal Langerhans cells.Int Arch Allergy Immunol. 1999;120:56–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Enk AH, Katz SI. Early molecular events in the induction phase of contact sensitivity.Proc Natl Acad Sci USA. 1992;89:1398–1402.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang B, Feliciani C, Howell BG, et al. Contribution of Langerhans cell-derived IL-18 to contact hypersensitivity.J Immunol. 2002;168:3303–3308.PubMedGoogle Scholar
  71. 71.
    Kessler BM, Glas R, Ploegh HL. MHC class I antigen processing regulated by cytosolic proteolysis-short cuts that alter peptide generation.Mol Immunol. 2002;39:171–179.PubMedCrossRefGoogle Scholar
  72. 72.
    Cresswell P. Assembly, transport, and function of MHC class II molecules.Annu Rev Immunol. 1994;12:259–293.PubMedCrossRefGoogle Scholar
  73. 73.
    Cresswell P, Androlewicz MJ, Ortmann B. Assembly and transport of class I MHC-peptide complexes.Ciba Found Symp. 1994;187:150–162.PubMedGoogle Scholar
  74. 74.
    Park BK, Pirmohamed M, Kitteringham NR. Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective.chem Res Toxicol. 1998;11:969–988.PubMedCrossRefGoogle Scholar
  75. 75.
    Herouet C, Cottin M, LeClaire J, et al. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.In Vitr Mol Toxicol. 2000;13:113–123.PubMedCrossRefGoogle Scholar
  76. 76.
    Cumberbatch M, Dearman RJ, Griffiths CE, et al. Epidermal Langerhans cell migration and sensitization to chemical allergens.APMIS. 2003;111:797–804.PubMedCrossRefGoogle Scholar
  77. 77.
    Mizuashi M, Ohtani T, Nakagawa S, et al. Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells.J Invest Dermatol. 2005;124:579–586.PubMedCrossRefGoogle Scholar
  78. 78.
    Chambers CA, Allison JP. Costimulation in T cell responses.Curr Opin Immunol. 1997;9:396–404.PubMedCrossRefGoogle Scholar
  79. 79.
    McAdam AJ, Schweitzer AN, Sharpe AH. The role of B7 costimulation in activation and differentiation of CD4+ and CD8+ T cells.Immunol Rev. 1998;165:231–247.PubMedCrossRefGoogle Scholar
  80. 80.
    Hochweller K, Anderton SM. Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo.Eur J Immunol. 2005;35:1086–1096.PubMedCrossRefGoogle Scholar
  81. 81.
    Yokozeki H, Takayama K, Ohki O, et al. Comparative analysis of CD8- and CD86 on human Langerhans cells: expression and function.Arch Dermatol Res. 1998;290:547–552.PubMedCrossRefGoogle Scholar
  82. 82.
    Wakems P Jr, Burns RP Jr, Ramirez F, et al. Allergens and irritants transcriptionally upregulate CD80 gene expression in human keratinocytes.J Invest Dermatol. 2000;114:1085–1092.CrossRefGoogle Scholar
  83. 83.
    Fabbri M, Smart C, Pardi R. T lymphocytes.Int J Biochem Cell Biol. 2003;35:1004–1008.PubMedCrossRefGoogle Scholar
  84. 84.
    Yawalkar N, Hari Y, Frutig K, et al. T cells isolated from positive epicutaneous test reactions to amoxicillin and ceftriaxone are drug specific and cytotoxic.J Invest Dermatol. 2000;115:647–652.PubMedCrossRefGoogle Scholar
  85. 85.
    Naisbitt DJ, Britschgi M, Wong G, et al. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones.Mol Pharmacol. 2003;63:732–741.PubMedCrossRefGoogle Scholar
  86. 86.
    Schnyder B, Mauri-Hellweg D, Zanni M, et al. Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones.J Clin Invest. 1997;100:136–141.PubMedCrossRefGoogle Scholar
  87. 87.
    Zanni MP, Mauri-Hellweg D, Brander C, et al. Characterization of lidocaine-specific T cells.J Immunol. 1997;158:1139–1148.PubMedGoogle Scholar
  88. 88.
    Zanni MP, von Greyerz S, Hari Y, et al. Recognition of local anesthetics by alphabeta+ T cells.J Invest Dermatol. 1999;112:197–204.PubMedCrossRefGoogle Scholar
  89. 89.
    Gerber BO, Pichler WJ. Cellular mechanisms of T cell mediated drug hypersensitivity.Curr Opin Immunol. 2004;16:732–737.PubMedCrossRefGoogle Scholar
  90. 90.
    Gerber BO, Pichler WJ. Noncovalent interactions of drugs with immune receptors may mediate drug-induced hypersensitivity reactions.AAPS J. In Press.Google Scholar
  91. 91.
    Santamaria Babi LF, Perez Soler MT, Hauser C, et al. Skin-homing T cells in human cutaneous allergic inflammation.Immunol Res. 1995;14:317–324.PubMedCrossRefGoogle Scholar
  92. 92.
    Santamaria LF, Perez Soler MT, Hauser C, et al. Allergen specificity and endothelial transmigration of T cells in allergic contact dermatitis and atopic dermatitis are associated with the cutaneous lymphocyte antigen.Int Arch Allergy Immunol. 1995;107:359–362.PubMedCrossRefGoogle Scholar
  93. 93.
    Pichler WJ, Yawalkar N, Britschgi M, et al. Cellular and molecular pathophysiology of cutaneous drug reactions.Am J Clin Dermatol. 2002;3:229–238.PubMedCrossRefGoogle Scholar
  94. 94.
    Nickoloff BJ, Turka LA. Immunological functions of nonprofessional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes.Immunol Today. 1994;15:464–469.PubMedCrossRefGoogle Scholar
  95. 95.
    Wikner NE, Huff JC, Norris DA, et al. Study of HLA-DR synthesis in cultured human keratinocytes.J Invest Dermatol. 1986;87:559–564.PubMedCrossRefGoogle Scholar
  96. 96.
    Meunier L, Vian L, Lagoueyte C, et al. Quantification of CD1a, HLA-DR, and HLA class I expression on viable human Langerhans cells and keratinocytes.Cytometry. 1996;26:260–264.PubMedCrossRefGoogle Scholar
  97. 97.
    Gueniche A, Viac J, Lizard G, et al. Effect of nickel on the activation state of normal human keratinocytes through interleukin 1 and intercellular adhesion molecule 1 expression.Br J Dermatol. 1994;131:250–256.PubMedCrossRefGoogle Scholar
  98. 98.
    Gueniche A, Viac J, Lizard G, et al. Effect of various metals on intercellular adhesion molecule-1 expression and tumour necrosis factor alpha production by normal human keratinocytes.Arch Dermatol Res. 1994;286:466–470.PubMedCrossRefGoogle Scholar
  99. 99.
    Dang LH, Michalek MT, Takei F, et al. Role of ICAM-1 in antigen presentation demonstrated by ICAM-1 defective mutants.J Immunol. 1990;144:4082–4091.PubMedGoogle Scholar
  100. 100.
    Piguet PF. Keratinocyte-derived tumor necrosis factor and the physiopathology of the skin.Springer Semin Immunopathol. 1992;13:345–354.PubMedCrossRefGoogle Scholar
  101. 101.
    Terunuma A, Aiba S, Tagami H. Cytokine mRNA profiles in cultured human skin component cells exposed to various chemicals: a simulation model of epicutaneous stimuli induced by skin barrier perturbation in comparison with that due to exposure to haptens or irritant.J Dermatol Sci. 2001;26:85–93.PubMedCrossRefGoogle Scholar
  102. 102.
    Ansel J, Perry P, Brown J, et al. Cytokine modulation of keratinocyte cytokines.J Invest Dermatol. 1990;94:101S-107S.PubMedCrossRefGoogle Scholar
  103. 103.
    Sebastiani S, Albanesi C, De PO, et al. The role of chemokines in allergic contact dermatitis.Arch Dermatol Res. 2002;293:552–559.PubMedGoogle Scholar
  104. 104.
    Albanesi C, Scarponi C, Giustizieri ML, et al. Keratinocytes in inflammatory skin diseases.Curr Drug Targets Inflamm Allergy. 2005;4:329–334.PubMedCrossRefGoogle Scholar
  105. 105.
    Cumberbatch M, Bhushan M, Dearman RJ, et al. IL-1beta-induced Langerhans’ cell migration and TNF-alpha production in human skin: regulation by lactoferrin.Clin Exp Immunol. 2003;132:352–359.PubMedCrossRefGoogle Scholar
  106. 106.
    Cumberbatch M, Dearman RJ, Griffiths CE, et al. Langerhans cell migration.Clin Exp Dermatol. 2000;25:413–418.PubMedCrossRefGoogle Scholar
  107. 107.
    Cumberbatch M, Griffiths CE, Tucker SC, et al. Tumour necrosis factor-alpha induces Langerhans cell migration in humans.Br J Dermatol. 1999;141:192–200.PubMedCrossRefGoogle Scholar
  108. 108.
    Nassif A., Moslehi H, Le Gouvello S, et al. Evaluation of the potential role of cytokines in toxic epidernal necrolysis.J Invest Dermatol. 2004;123:850–855.PubMedCrossRefGoogle Scholar
  109. 109.
    Hulette BA, Ryan CA, Gerberick GF. Elucidating changes in surface marker expression of dendritic cells following chemical allergen treatment.Toxicol Appl Pharmacol. 2002;182:226–233.PubMedCrossRefGoogle Scholar
  110. 110.
    Albanesi C, Cavani A, Girolomoni G. Interferon-gamma-stimulated human keratinocytes express the genes necessary for the production of peptide-loaded MHC class II molecules.J Invest Dermatol. 1998;110:138–142.PubMedCrossRefGoogle Scholar
  111. 111.
    Basham TY, Nickoloff BJ, Merigan TC, et al. Recombinatn gamma interferon induces HLA-DR expression on cultured human keratinocytes.J Invest Dermatol. 1984;83:88–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Lisby S, Muller KM, Jongeneel CV, et al. Nickel and skin irritants up-regulate tumor necrosis factor-alpha mRNA in keratinocytes by different but potentially synergistic mechanisms.Int Immunol. 1995;7:343–352.PubMedCrossRefGoogle Scholar
  113. 113.
    Wilmer JL, Burleson FG, Kayama F, et al. Cytokine induction in human epidermal keratinocytes exposed to contact irritants and its relation to chemical-induced inflammation in mouse skin.J Invest Dermatol. 1994;102:915–922.PubMedCrossRefGoogle Scholar
  114. 114.
    Piguet PF, Grau GE, Hauser C, et al. Tumor necrosis factor is a critical mediator in hapten induced irritant and contact hypersensitivity reactions.J Exp Med. 1991;173:673–679.PubMedCrossRefGoogle Scholar
  115. 115.
    Vandebriel RJ, Van Och FM, van Loveren H. In vitro assessment of sensitizing activity of low molecular weight compounds.Toxicol Appl Pharmacol. 2005;207:142–148.PubMedCrossRefGoogle Scholar
  116. 116.
    O’Garra A, McEvoy LM, Zlotnik A. T-cell subsets: chemokine receptors guide the way.Curr Biol. 1998;8:R646-R649.PubMedCrossRefGoogle Scholar
  117. 117.
    Lebrec H, Kerdine S, Gaspard I, et al. Th(1)/Th(2) responses to drugs.Toxicology. 2001;158:25–29.PubMedCrossRefGoogle Scholar
  118. 118.
    Umetsu DT, DeKruyff RH. Th1 and Th2 CD4+ cells in the pathogenesis of allergic diseases.Proc Soc Exp Biol Med. 1997;215:11–20.PubMedGoogle Scholar
  119. 119.
    Xu H, DiIulio NA, Fairchild RL. T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukins (II) 4/II-10-producing (Th2) negative regulatory CD4+T cells.J Exp Med. 1996;183:1001–1012.PubMedCrossRefGoogle Scholar
  120. 120.
    Fuchs J, Zollner TM, Kaufmann R, et al. Redox-modulated pathways in inflammatory skin diseases.Free Radic Biol Med. 2001;30:337–353.PubMedCrossRefGoogle Scholar
  121. 121.
    Steinbrink K, Sorg C, Macher E. Low zone tolerance to contact allergens in mice: a functional role for CD8+T helper type 2 cells.J Exp Med. 1996;183:759–768.PubMedCrossRefGoogle Scholar
  122. 122.
    Dearman RJ, Basketter DA, Kimber I. Characterization of chemical allergens as a function of divergent cytokine secretion profiles induced in mice.Toxicol Appl Pharmacol. 1996;138:308–316.PubMedCrossRefGoogle Scholar
  123. 123.
    Dieli F, Asherson GL, Sireci G, et al. Development of IFN-gammaproducing CD8+ gamma delta+T lymphocytes and IL-2-producing CD4+ alpha beta+T lymphocytes during contact sensitivity.J Immunol. 1997;158:2567–2575.PubMedGoogle Scholar
  124. 124.
    Blaise GA, Gauvin D, Gangal M, et al. Intric oxide, cell signaling and cell death.Toxicology. 2005;208:177–192.PubMedCrossRefGoogle Scholar
  125. 125.
    Ross R, Reske-Kunz AB. The role of NO in contact hypersensitivity.Int Immunopharmacol. 2001;1:1469–1478.PubMedCrossRefGoogle Scholar
  126. 126.
    Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects.J Invest Dermatol. 1998;110:1–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Weller R. Nitric oxide: a key mediator in cutaneous physiology.Clin Exp Dermatol. 2003;28:511–514.PubMedCrossRefGoogle Scholar
  128. 128.
    Deliconstantinos G, Villiotou V, Stravrides JC. Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production.Br J Pharmacol. 1995;114:1257–1265.PubMedGoogle Scholar
  129. 129.
    Nathan C. Inducible nitric oxide synthase: what difference does it make?.J Clin Invest. 1997;100:2417–2423.PubMedCrossRefGoogle Scholar
  130. 130.
    Arany I, Brysk MM, Brysk H, et al. Induction of iNOS mRNA by interferon-gamma in epithelial cells is associated with growth arrest and differentiation.Cancer Lett. 1996;110:93–96.PubMedCrossRefGoogle Scholar
  131. 131.
    Qureshi AA, Hosoi J, Xu S, et al. Langerhans cells express inducible nitric oxide synthase and produce nitric oxide.J Invest Dermatol. 1996;107:815–821.PubMedCrossRefGoogle Scholar
  132. 132.
    Rocha IM, Guillo LA. Lipopolysaccharide and cytokines induce nitric oxide synthase and produce nitric oxide in cultured normal human melanocytes.Arch Dermatol Res. 2001;293:245–248.PubMedCrossRefGoogle Scholar
  133. 133.
    Chang HR, Tsao DA, Wang SR, et al. Expression of nitric oxide synthases in keratinocytes after UVB irradiation.Arch Dermatol Res. 2003;295:293–296.PubMedCrossRefGoogle Scholar
  134. 134.
    Warren JB. Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet light.FASEB J. 1994;8:247–251.PubMedGoogle Scholar
  135. 135.
    Lerner LH, Qureshi AA, Reddy BV, et al. Nitric oxide synthase in toxic epidermal necrolysis and Stevens-Johnson syndrome.J Invest Dermatol. 2000;114:196–199.PubMedCrossRefGoogle Scholar
  136. 136.
    Rowe A, Farrell AM, Bunker CB. Constitutive endothelial and inducible nitric oxide synthase in inflammatory dermatoses.Br J Dermatol. 1997;136:18–23.PubMedCrossRefGoogle Scholar
  137. 137.
    Lippe IT, Stabentheiner A, Holzer P. Participation of nitric oxide in the mustard oil-induced neurogenic inflammation of the rat paw skin.Eur J Pharmacol. 1993;232:113–120.PubMedCrossRefGoogle Scholar
  138. 138.
    Morita H, Hori M, Kitano Y. Modulation of picryl chloride-induced contact hypersensitivity reaction in mice by nitric oxide.J Invest Dermatol. 1996;107:549–552.PubMedCrossRefGoogle Scholar
  139. 139.
    Ross R, Gillitzer C, Kleinz R, et al. Involvement of NO in contact hypersensitivity.Int Immunol. 1998;10:61–69.PubMedCrossRefGoogle Scholar
  140. 140.
    Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls.Cell. 1994;78:915–918.PubMedCrossRefGoogle Scholar
  141. 141.
    Forstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and functions.Hypertension. 1994;23:1121–1131.PubMedGoogle Scholar
  142. 142.
    Wanikiat P, Woodward DF, Armstrong RA. Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils.Br J Pharmacol. 1997;122:1135–1145.PubMedCrossRefGoogle Scholar
  143. 143.
    Shin WS, Hong YH, Peng HB, et al. Nitric oxide attenuates vascular smooth muscle cell activation by interferon-gamma: the role of constitutive NF-kappa B activity.J Biol Chem. 1996;271:11317–11324.PubMedCrossRefGoogle Scholar
  144. 144.
    Bonham CA, Lu L, Li Y, et al. Nitric oxide production by mouse bone marrow-derived dendritic cells: implications for the regulation of allogeneic T cell responses.Transplantation. 1996;62:1871–1877.PubMedCrossRefGoogle Scholar
  145. 145.
    Lu L, Bonham CA, Chambers FG, et al. Induction of nitric oxide synthase in mouse dendritic cells by IFN-gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis.J Immunol. 1996;157:3577–3586.PubMedGoogle Scholar
  146. 146.
    Virag L, Szabo E, Bakondi E, et al. Nitric oxide-peroxynitritepoly(ADP-ribose) polymerase pathway in the skin.Exp Dermatol. 2002;11:189–202.PubMedCrossRefGoogle Scholar
  147. 147.
    Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases: what’s new.J Eur Acad Dermatol Venereol. 2003;17:663–669.PubMedCrossRefGoogle Scholar
  148. 148.
    Chain BM. Current issues in antigen presentation: focus on the dendritic cell.Immunol Lett. 2003;89:237–241.PubMedCrossRefGoogle Scholar
  149. 149.
    Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades.Free Radic Biol Med. 2000;28:1379–1386.PubMedCrossRefGoogle Scholar
  150. 150.
    Rutault K, Alderman C, Chain BM, et al. Reactive oxygen species activate human peripheral blood dendritic cells.Free Radic Biol Med. 1999;26:232–238.PubMedCrossRefGoogle Scholar
  151. 151.
    Verhasselt V, Goldman M, Willems F. Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells.Eur J Immunol. 1998;28:3886–3890.PubMedCrossRefGoogle Scholar
  152. 152.
    Mates JM, Perez-Gomez C, Olalla L, et al. Allergy to drugs: antioxidant enzymic activities, lipid peroxidation and protein oxidative damage in human blood.Cell Biochem Funct. 2000;18:77–84.PubMedCrossRefGoogle Scholar
  153. 153.
    Coopman SA, Johnson RA, Platt R, et al. Cutaneous disease and drug reactions in HIV infection.N Engl J Med. 1993;328:1670–1674.PubMedCrossRefGoogle Scholar
  154. 154.
    Buhl R, Jaffe HA, Holroyd KJ, et al. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals.Lancet. 1989;2:1294–1298.PubMedCrossRefGoogle Scholar
  155. 155.
    Kaur S, Zilmer M, Eisen M, et al. Patients with allergic and irritant contact dermatitis are characterized by striking change of iron and oxidized glutathione status in nonlesional area of the skin.J Invest Dermatol. 2001;116:886–890.PubMedCrossRefGoogle Scholar
  156. 156.
    Kaur S, Zilmer M, Eisen M, et al. Nickel sulphate and epoxy resin: differences in iron status and glutathione redox ration at the time of patch testing.Arch Dermatol Res. 2004;295:517–520.PubMedCrossRefGoogle Scholar
  157. 157.
    Nordberg J, Zhong L, Holmgren A, et al. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue.J Biol Chem. 1998;273:10835–10842.PubMedCrossRefGoogle Scholar
  158. 158.
    Vyas PM, Roychowdhury S, Woster PM, et al. Reactive oxygen species generation and its role in the differential cytotoxicity of the arylhy droxylamine metabolites of sulfamethoxazole and dapsone in normal human epidermal keratinocytes.Biochem Pharmacol. 2005;70:275–286.PubMedCrossRefGoogle Scholar
  159. 159.
    Kantengwa S, Jornot L, Devenoges C, et al. Superoxide anions induce the maturation of human dendritic cells.Am J Respir Crit Care Med. 2003;167:431–437.PubMedCrossRefGoogle Scholar
  160. 169.
    Chen KH, Reece LM, Leary JF. Mitochondrial glutathione modulates TNF-alpha-induced endothelial cell dysfunction.Free Radic Biol Med. 1999;27:100–109.PubMedCrossRefGoogle Scholar
  161. 161.
    Ikeda M, Schroeder KK, Mosher LB, et al. Suppressive effect of antioxidants on intercellular adhesion molecule-1 (ICAM-1) expression in human epidermal keratinocytes.J Invest Dermatol. 1994;103:791–796.PubMedCrossRefGoogle Scholar
  162. 162.
    Faruqi RM, Poptic EJ, Faruqi TR, et al. Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression.Am J Physiol. 1997;273:H817-H826.PubMedGoogle Scholar
  163. 163.
    Matsue H, Edelbaum D, Shalhevet D, et al. Generation and function of reactive oxygen species in dendritic cells during antigen presentation.J Immunol. 2003;171:3010–3018.PubMedGoogle Scholar
  164. 164.
    Sandstrom PA, Buttke TM. Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium.Proc Natl Acad Sci USA. 1993;90:4708–4712.PubMedCrossRefGoogle Scholar
  165. 165.
    Kannan K, Jain SK. Oxidative stress and apoptosis.Pathophysiology. 2000;7:153–163.PubMedCrossRefGoogle Scholar
  166. 166.
    Ogawa Y, Kobayashi T, Nishioka A, et al. Reactive oxygen species-producing site in hydrogen peroxide-induced apoptosis of human peripheral T cells: involvement of lysosomal membrane destabilization.Int J Mol Med. 2004;13:383–388.PubMedGoogle Scholar
  167. 167.
    Devadas S, Zaritskaya L, Rhee SG, et al. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression.J Exp Med. 2002;195:59–70.PubMedCrossRefGoogle Scholar
  168. 168.
    Hildeman DA, Zhu Y, Mitchell TC, et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family membber bim.Immunity. 2002;16:759–767.PubMedCrossRefGoogle Scholar
  169. 169.
    Fuchs J, Packer L. Antioxidant protection from solar-simulated radiation-induced suppression of contact hypersensitivity to the recall antigen nickel sulfate in human skin.Free Radic Biol Med. 1999;27:422–427.PubMedCrossRefGoogle Scholar
  170. 170.
    Pasche-Koo F, Arechalde A, Arrighi JF, et al. Effect of N-acetylcysteine, an inhibitor of tumor necrosis factor, on irritant contact dermatitis in the human.Curr Probl Dermatol. 1995;23:198–206.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  1. 1.Division of Pharmaceutics, College of PharmacyThe University of IowaIowa City

Personalised recommendations