The AAPS Journal

, Volume 7, Issue 3, pp E579–E586 | Cite as

RETRACTED ARTICLE: Recent advances for the treatment of cocaine abuse: Central nervous system immunopharmacotherapy



Cocaine addiction continues to be a major health and societal problem in spite of governmental efforts devoted toward educating the public of the dangers of illicit drug use. A variety of pharmacotherapies and psychosocial programs have been proposed in an effort to provide a method for alleviation of the physical and psychological symptoms of cocaine abuse. Unfortunately, these methods have been met with limited success, illustrating a critical need for new effective approaches for the treatment of cocaine addiction. Recently an alternative cocaine abuse treatment strategy was proposed using intranasal administration of an engineered filamentous bacteriophage displaying cocaine-sequestering antibodies on its surface. These phage particles are an effective vector for CNS penetration and are capable of binding cocaine, thereby blocking its behavioral effects in a rodent model. The convergence of phage display and immunopharmacotherapy has allowed for an investigation of the efficacy of protein-based therapeutics acting within the CNS on the effects of cocaine in animal models and has uncovered a new tool in the battle against cocaine addiction.


cocaine central nervous system immunopharmacotherapy virus phage display 


  1. 1.
    Koob GF. Neurobiology of addiction. Toward the development of new therapies.Ann NY Acad Sci. 2000;909:170–185.PubMedCrossRefGoogle Scholar
  2. 2.
    Weiss F., Koob GF. Drug addiction: functional neurotoxicity of the brain reward systems.Neurotoxic Res. 2001;3:145–156.CrossRefGoogle Scholar
  3. 3.
    Melichar JK, Daglish MRC, Nutt DJ. Addiction and withdrawalcurrent views.Curr Opin Pharmacol. 2001;1:84–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status.Trends Neurosci. 1999;22:521–527.PubMedCrossRefGoogle Scholar
  5. 5.
    Di Chiana G. The role of dopamine in drug abuse viewed from the perspective of its role in motivation.Drug Alcohol Depend. 1995;38:95–137.CrossRefGoogle Scholar
  6. 6.
    Johanson C-E, Fischman MW. The pharmacology of cocaine related to its abuse.Pharmacol Rev. 1989;41:3–52.PubMedGoogle Scholar
  7. 7.
    Blaine JD, Ling W. Psychopharm acologic treatment of cocaine dependence.Psychopharmacol Bull. 1992;28:11–14.PubMedGoogle Scholar
  8. 8.
    Substance Abuse and Mental Health Services Administration, Office of Applied Studies,Preliminary estimates from the 1992 Household Survey on Drug Abuse.Advance Report No. 3. Washington, DC: US Department of Health and Human Services, Public Health Service, June 1993.Google Scholar
  9. 9.
    Cregler LL, Herbert M. Medical complications of cocaine abuse.N Engl J Med. 1986;315:1495–1500.PubMedCrossRefGoogle Scholar
  10. 10.
    Des Jarlais DC, Friedman SR. AIDS and i.v. drug use.Science. 1989;245:578–579.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee JH, Bennett G. Substaance abuse in adulthood. In: Bennett G, Woolf D, ed.Substance Abuse: Pharmacologic, Developmental and Clinical Perspectives. Albany: Delman Publishing, 1991:157–170.Google Scholar
  12. 12.
    Walsh SL. Behavioral pharmacology of cocaine. In: Tarter RE, Ammerman RT, Ott PJ, eds.Handbook of Substance Abuse: Neurobehavioral Pharmacology: New York: Plenum; 1998:187–200.CrossRefGoogle Scholar
  13. 13.
    Mendelson JH, Mello NK. Management of cocaine abuse and dependence.N Engl J Med. 1996;334:965–972.PubMedCrossRefGoogle Scholar
  14. 14.
    Gorelick DA. Pharmacologic interventions for cocaine, crack, and other stimulant addiction. In: Graham AW, Schultz TK, eds.,Principles of Addiction Medicine. Chevy Chase, MD. American Society of Addiction Medicine; 2003:89–111.Google Scholar
  15. 15.
    Gorelick DA, Gardner EL, Xi Z-X. Agents in the development for the management of cocaine abuse.Drugs. 2004;64:1547–1573.PubMedCrossRefGoogle Scholar
  16. 16.
    Leiderman DB, Shoptaw S, Montgomery A, et al. Cocaine rapid efficacy screening trial (CREST). A paradigm for the controlled evaluation of candidate medications for cocaine dependence.Addiction. 2005;100:1–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Winhusen TM, Somoza EC, Harrer JM, et al. A placebo-controlled screening trial of tiagabine, sertaline and donepezil as cocaine dependence treatment.Addiction. 2005;100:68–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Gonzalez G, Sevarino K, Sofuoglu M, et al. Tiagabine increases cocaine-free urines in cocaine-dependent methadone-treated patients: results of a randomized pilot study.Addiction. 2003;98:1625–1632PubMedCrossRefGoogle Scholar
  19. 19.
    Carroll KM, Fenton LR, Ball SA, et al. Efficacy of disulfiram and cognitive behavior therapy in cocaine-dependent outpatients: a randomized placebo-controlled trial.Arch Gen Psychiatry 2004;61:264–272.PubMedCrossRefGoogle Scholar
  20. 20.
    Houtsmuller EJ, Notes LD, Newton T, et al. Transdermal selegiline and intravenous cocaine: safety and interactions.Psychopharmacology (Berl). 2004;172:31–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Shoptaw S, Yang X, Rotheram-Fuller EJ, et al. Randomized placebo-controlled trial of baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine use.J Clin Psychiatry. 2003;64:1440–1448.PubMedCrossRefGoogle Scholar
  22. 22.
    Kampman KM, Pettinati H, Lynch KG, et al. A pilot trial of topiramate for the treatment of cocaine dependence.Drug Alcohol Depend. 2004;75:233–240.PubMedCrossRefGoogle Scholar
  23. 23.
    Kampman KM, Volpicelli JR, Mulvaney F, et al. Effectiveness of propranolol for cocaine dependence treatment may depend on cocaine withdrawal symptom severity.Drug Alcohol Depend. 2001;63:69–78.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoffman JA III, Caudill BD III, Koman JJ III, Luckey JW, Flynn PM, Hubbard RL. Comparative cocaine abuse treatment strategies: enhancing client retention and treatment exposure.J Addict Dis. 1994;13:115–128.PubMedCrossRefGoogle Scholar
  25. 25.
    Cashman JR. Biocatalysts in detoxication of drug of abuse.NIDA Res Monogr. 1997;173:225–258.PubMedGoogle Scholar
  26. 26.
    Carrera MRA, Ashley JA, Parsons LH, Wirsching P, Koob GF, Janda KD. Suppression of psychoactive effects of cocaine by active immunization.Nature. 1995;378:727–730.PubMedCrossRefGoogle Scholar
  27. 27.
    Carrera MRA, Ashley JA, zhou B, Wirsching P, Koob GF, Janda KD. Cocaine vaccines: antibody protection against relapse in a rat model.Proc Natl Acad Sci USA. 2000;97:6202–6206.PubMedCrossRefGoogle Scholar
  28. 28.
    Carrera MRA, Ashley JA, Wirsching P, Koob GF, Janda KD. A second-generation vaccine protects against the psychoactive effects of cocaine.Proc Natl Acad Sci USA. 2001;98:1988–1992.PubMedCrossRefGoogle Scholar
  29. 29.
    Fox BS, Kantak KM, Edwards MA, et al. Efficacy of a therapeutic cocaine vaccine in rodent models.Nat Med. 1996;2:11129–11132.Google Scholar
  30. 30.
    Kantak KM, Collins SL, Lipman EG, Bond J, Giovanoni K, Fox BS. Evaluation of anti-cocaine antibodies and a cocaine vaccine in a rat self-administration model.Psychopharmacology (Berl.) 2000;148:251–262.CrossRefGoogle Scholar
  31. 31.
    Landry DW, Zhao K, Yang GX-P, Glickman M, Georgiadis TM. Antibody-catalyzed degradation of cocaine.Science. 1993;259:1899–1901.PubMedCrossRefGoogle Scholar
  32. 32.
    Cashman JR, Berkman CE, Underiner GE. Catalytic antibodies that hydrolyze (−)-cocaine obtained by a high-throughput procedure.J Pharmacol Exp Ther. 2000;293:952–961.PubMedGoogle Scholar
  33. 33.
    Yang G, Chun J, Arakawa-Uramoto H, et al. Anti-cocaine catalytic antibodies: a synthetic approach to improved antibody diversity.J Am Chem. Soc. 1996;118:5880–5890.Google Scholar
  34. 34.
    Baird TJ, Deng S-X, Landry DW, Winger G, Woods JH. Natural and artificial enzymes against cocaine. I. Monoclonal antibody 15A10 and the reinforcing effects of cocaine in rats.J Pharmacol Exp Ther. 2000;295:1127–1134.PubMedGoogle Scholar
  35. 35.
    Matsushita M, Hoffman TZ, Ashley JA, Zhou B, Wirsching P, Janda KD. Cocaine catalytic antibodies: the primary importance of linker effects.Bioorg Med Chem Lett. 2001;11:87–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Isomura S., Hoffman TZ, Wirsching P, Janda KD. Synthesis, properties, and reactivity of cocaine benzoylthioester possessing the cocaine absolute configuration.J Am Chem Soc. 2002;124:3661–3668.PubMedCrossRefGoogle Scholar
  37. 37.
    Meijler MM, Matsushita M, Wirsching P, Janda KD. Development of immunopharmacotherapy against drugs of abuse.Curr Drug Discov Tech. 2004;1:77–89.CrossRefGoogle Scholar
  38. 38.
    Haney M, Kosten TR. Therapeutic vaccines for substance dependence.Expert Rev Vaccines. 2004;3:11–18.PubMedCrossRefGoogle Scholar
  39. 39.
    Gorelick DA. Enhancing cocaine metabolism with butyrylcholinesterase as a treatment strategy.Drug Alcohol Depend. 1997;48:159–165.PubMedCrossRefGoogle Scholar
  40. 40.
    Mattes CE, Belendiuk GW, Lynch TJ, Brady RO, Dretchen KL. Butyrylcholinesterase: an enzyme antidote for cocaine intoxication.Addict Biol. 1998;3:171–188.CrossRefGoogle Scholar
  41. 41.
    Nachon F, Nicolet Y, Viquie N, Masson P, Fontecilla-Camps JD, Lockridge O. Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization.Eur J Biochem. 2002;269:630–637.PubMedCrossRefGoogle Scholar
  42. 42.
    Mattes CE, Lynch TJ, Singh A, et al. Therapeutic use of butyrylcholinesterase for cocaine intoxication.Toxicol Appl Pharmacol. 1997;145:372–380.PubMedCrossRefGoogle Scholar
  43. 43.
    Sun H, Pang Y-P, Lockridge O, Brimijoin S. Re-engineering butyrylcholinesterase as a cocaine hydrolase.Mol Pharmacol. 2002;62:220–224.PubMedCrossRefGoogle Scholar
  44. 44.
    Larocca D, Burg MA, Jensen-Pergakes K, Ravey PE, Gonzales AM, Baird A. Evolving phage vectors for cell targeted gene delivery.Curr Pharm Biotechnol. 2002;3:45–57.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith GP. Filamentous fusion phage, novel expression vectors that display cloned antigens on the virion surface.Science. 1985;228:1315–1317.PubMedCrossRefGoogle Scholar
  46. 46.
    Carlton RM. Phage therapy: past history and future prospects.Arch Immunol Ther Exp (Warsz). 1999;47:267–274.PubMedGoogle Scholar
  47. 47.
    Smith HW, Huggins RB. Successful treatment of experimental E coli infections in mice using phage: it general superiority over antibiotics.J Gen Microbiol. 1982;128:307–318.PubMedGoogle Scholar
  48. 48.
    Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowski A. Results in bacteriophage treatment of suppurative bacterial infections in the years 1981–1986.Arch Immunol Ther Exp (Warsz). 1986;35:569–583.Google Scholar
  49. 49.
    Stone R. Stalin’s forgotten cure.Science. 2002;298:728–731.PubMedCrossRefGoogle Scholar
  50. 50.
    Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries.Nature. 1996;380:364–366.PubMedCrossRefGoogle Scholar
  51. 51.
    Essler M, Ruoslahti E.. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculatures.Proc Natl Acad Sci USA. 2002;99:2252–2257.PubMedCrossRefGoogle Scholar
  52. 52.
    Dabrowska K., Switala-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A. Bacteriophage penetration in vertebrates.J Appl Microbiol. 2005;98:7–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Frenkel D, Solomon B. Filamentous phage as vector-mediated antibody delivery to the brain.Proc Natl Acad Sci USA. 2002;99:5675–5679.PubMedCrossRefGoogle Scholar
  54. 54.
    Gao C, Mao S, Lo C-HL, Wirsching P, Lerner RA, Janda KD. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays.Proc Natl Acad Sci USA. 1999;96:6025–6030.PubMedCrossRefGoogle Scholar
  55. 55.
    Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD. A method for the generation of combinatorial antibody libraries using pIX phage display.Proc Natl Acad Sci USA. 2002;99:12612–12616.PubMedCrossRefGoogle Scholar
  56. 56.
    Carrera MRA, Kaufmann GF, Mee JM, Meijler MM, Koob GF, Janda KD. Treating cocaine addiction with viruses.Proc Natl Acad Sci USA. 2004;101:10416–10421.PubMedCrossRefGoogle Scholar
  57. 57.
    Barbas CF, Burton DR, Scott JK, Silverman GJ.Phage Display: A Laboratory Manual: Tuebingen, Germany: Cold Spring Harbor Laboratory Press; 2001.Google Scholar
  58. 58.
    Lyon M, Robbins TW. The action of central nervous system stimulant drugs: a general theory concerning amphetamine effects. In: Essman W, Valzelli L, eds.,Current Developments in Psychopharmacology. vol. 4. New York: Spectrum; 1975:79–163.Google Scholar
  59. 59.
    Illum L, Davis SS. Polymeric lamellar substrate particles for intranasal vaccination.Adv Drug Deliv Res. 2001;51:97–111.CrossRefGoogle Scholar
  60. 60.
    Jones N. The nose and paranasal sinuses physiology and anatomy.Adv Drug Deliv Rev. 2001;51:5–19.PubMedCrossRefGoogle Scholar
  61. 61.
    Bresler MM, Rosser SJ, Basran A, Bruce NC. Gene cloning and nucleotide sequencing and properties of a cocaine esterase fromRhodococcus sp strain MB1.Appl Environ Microbiol. 2000;66:904–908.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  1. 1.The Skaggs Institute for Chemical Biology and Department of ChemistryThe Scripps Research InstituteLa Jolla
  2. 2.Department of ImmunologyThe Scripps Research InstituteLa Jolla

Personalised recommendations