The AAPS Journal

, Volume 7, Issue 3, pp E532–E543

Toward the prediction of CNS drug-effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling

  • Elizabeth C. M. de Lange
  • Paulien G. M. Ravenstijn
  • Dorien Groenendaal
  • Tamara J. van Steeg
Article

Abstract

Our ultimate goal is to develop mechanism-based pharmacokinetic (PK)-pharmacodynamic (PD) models to characterize and to predict CNS drug responses in both physiologic and pathologic conditions. To this end, it is essential to have information on the biophase pharmacokinetics, because these may significantly differ from plasma pharmacokinetics. it is anticipated that biophase kinetics of CNS drugs are strongly influenced by transport across the blood-brain barrier (BBB). The special role of microdialysis in PK/PD modeling of CNS drugs lies in the fact that it enables the determination of free-drug concentrations as a function of time in plasma and in extracellular fluid of the brain, thereby providing important data to determine BBB transport characteristics of drugs. Also, the concentrations of (potential) extracellular biomarkers of drug effects or disease can be monitored with this technique. Here we describe our studies including microdialysis on the following: (1) the evaluation of the free drug hypothesis;(2) the role of BBB transport on the central effects of opioids; (3) changes in BBB transport and biophase equilibration of anti-epileptic drugs; and (4) the relation among neurodegeneration, BBB transport, and drug effects in Parkinson’s disease progression.

Keywords

blood-brain barrier pharmacokinetics pharmacodynamics biophase microdialysis 

References

  1. 1.
    Hammarlund-Udenaes M, Paalzow LN, de Lange EC. Drug equilibration across the blood-brain barrier-pharmacokinetic considerations based on the microdialysis method.Pharm Res. 1997;14:128–134.PubMedCrossRefGoogle Scholar
  2. 2.
    De Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain.Clin Pharmacokinet. 2002;41:691–703.PubMedCrossRefGoogle Scholar
  3. 3.
    Van der Graaf PH, Danhof M. Analysis of drug-receptor interactions in vivo: a new approach in pharmacokinetic-pharmacodynamic modelling.Int J Clin Pharmacol Ther. 1997;35:442–446.PubMedGoogle Scholar
  4. 4.
    Garrido M, Gubbens-Stibbe J, Tukker E, et al. Pharmacokinetic-pharmacodynamic analysis of the EEG effect of alfentanil in rats following beta-funaltrexamine-induced mu-opioid receptor “knockdown” in vivo.Pharm Res 2000;17:653–659.PubMedCrossRefGoogle Scholar
  5. 5.
    Cleton A, Odman J, Van der Graaf PH, Ghijsen W, Voskuyl R, Danhof M. Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam.Pharm Res. 2000;17:321–327.PubMedCrossRefGoogle Scholar
  6. 6.
    Cox EH, Kerbusch T, Van der Graaf PH, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the electroencephalogram effect of synthetic opioids in the rat. Correlation with binding at the μ-opioid receptor.J Pharmacol Exp Ther. 1998;284:1095–1103.PubMedGoogle Scholar
  7. 7.
    Collins JM, Dedrick LD. Distributed model for drug delivery to CSF and brain tissue.J Am Physiol. 1983;14:R303-R310.Google Scholar
  8. 8.
    Wang YF, Welty DF. The simultaneous estimation of the influx and efflux blood-brain barrier permeabilities of gabapentin using a microdialysis-pharmacokinetic approach.Pharm Res. 1996;13:398–403.PubMedCrossRefGoogle Scholar
  9. 9.
    Bodor N, Brewster ME. Problems of delivery of drugs to the brain.Pharmacol Ther. 1982;19:337–386.PubMedCrossRefGoogle Scholar
  10. 10.
    Begley DJ. ABC transporters and the blood-brain barrier.Curr Pharm Des. 2004;10:1295–1312.PubMedCrossRefGoogle Scholar
  11. 11.
    Tamai I, Yamashita J, Kido Y, et al. Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier.J Pharmacol Exp Ther. 2000;295:146–152.PubMedGoogle Scholar
  12. 12.
    Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites.Proc Natl Acad Sci USA 1989;86:695–689.PubMedCrossRefGoogle Scholar
  13. 13.
    Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues.Proc Natl Acad Sci USA. 1987;84:7735–7738.PubMedCrossRefGoogle Scholar
  14. 14.
    de Boer AG, van der Sandt I, Glillard PJ. The role of drug transporters at the blood-brain barrier.Annu Rev Pharmacol Toxicol. 2003;43:629–656.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang Y, Schuetz JD, Elmquist WF, Miller DW. Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells.J Pharmacol Exp Ther. 2004;311:449–455.PubMedCrossRefGoogle Scholar
  16. 16.
    Park S, Sinko PJ. P-glycoprotein and mutlidrug resistance-associated proteins limit the brain uptake of saquinavir in mice.J Pharmacol Exp Ther. 2005;312:1249–1256.PubMedCrossRefGoogle Scholar
  17. 17.
    Abbott NJ, Revest PA. Control of brain endothelial permeability.Cerebrovasc Brain Metab Rev. 1991;3:39–72.PubMedGoogle Scholar
  18. 18.
    Cornford EM, Young D, Paxton JW, Sofia RD. Blood-brain barrier penetration of felbamate.Epilepsia. 1992;33:944–954.PubMedCrossRefGoogle Scholar
  19. 19.
    Johansson BB. Hypertension. In: Pardridge WM, ed.Introduction to the Blood-brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998:427–433.Google Scholar
  20. 20.
    Hesselink MB, Smolders H, Eilbacher B, De Boer AG, Boer AG, Breimer DD, Danysz W. The role of probenecid-sensitive organic acid transport in the pharmacokinetics of N-methyl-D-aspartate receptor antagonists acting at the glycine(B)-site: Microdialysis and maximum electroshock seizures studies.J Pharmacol Exp Ther. 1999;290:543–550.PubMedGoogle Scholar
  21. 21.
    Malhotra BK, Lemaire M, Sawchuk RJ. Investigation of the distribution of EAB 515 to cortical ECF and CSF in freely moving rats utilizing microdialysis.Pharm Res. 1994;11:1223–1231.PubMedCrossRefGoogle Scholar
  22. 22.
    Ooie T, Terasaki T, Suzuki H, Sugiyama Y. Kinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics.J Pharmacol Exp Ther. 1997;283:293–304.PubMedGoogle Scholar
  23. 23.
    de Lange ECM, de Vries JD, Zurcher C, Danhof M, de Boer AG, Breimer DD. The use of intracerebral microdialysis for the determination of pharmacokinetic profiles of anticancer drugs in tumor-bearing rat brain.Pharm Res. 1995;12:1924–1931.PubMedCrossRefGoogle Scholar
  24. 24.
    de Lange ECM, Danhof M, de Boer AG, Breimer DD. Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain.Brain Res. 1994;666:1–8.PubMedCrossRefGoogle Scholar
  25. 25.
    de Lange ECM, Bouw MR, Danhof M, de Boer AG, Breimer DD. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain.Br J Pharmacol. 1995;116:2538–2544.PubMedGoogle Scholar
  26. 26.
    de Lange EC, de Bock G, Schinkel AH, de Boer AG, Breimer DD. BBB transport and P-glycoprotein functionality using MDR1A(−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123.Pharm Res. 1998;15:1657–1665.PubMedCrossRefGoogle Scholar
  27. 27.
    Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdrla(−/−) and mdrla(+/+) mice.Br J Pharmacol. 1999;128:563–568.PubMedCrossRefGoogle Scholar
  28. 28.
    de Lange ECM, Marchand S, van den Berg D, et al. In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin.Eur J Pharmacol Sci. 2000;12:85–93.CrossRefGoogle Scholar
  29. 29.
    de Lange ECM, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood-brain barrier.Brain Res Brain Res Rev. 1997;25:27–49.PubMedCrossRefGoogle Scholar
  30. 30.
    Breimer DD, Danhof M. Prediction of the time course of drug effects in vivo in health and disease (intensity and duration).Clin Pharmacokinet. 1997;32:259–267.PubMedCrossRefGoogle Scholar
  31. 31.
    Breimer DD, Danhof M. Relevance of the application of pharmacokinetic-pharmacodynamic modelling concepts in drug development. The ‘wooden shoe’ paradigm.Clin Pharmacokinet. 1997;32:259–267.PubMedCrossRefGoogle Scholar
  32. 32.
    Cleton A, Odman J, van der Graaf PH, Ghijsen W, Voskuyl R, Danhof M. Mechanism-based modeling of functional adaptation upon chronic treatment with midazolam.Pharm Res. 2000;17:321–327.PubMedCrossRefGoogle Scholar
  33. 33.
    Danhof M, Mandema JW, Hoogerkamp A, Mathôt RAA. Pharmacokinetic-pharmacodynamic modelling in pre-clinical investigations: principles and perspectives.Eur J Drug Metab Pharmacokinet. 1993;18:41–47.PubMedGoogle Scholar
  34. 34.
    Black JW, Leff P. Operational models of pharmacological agonism.Proc R Soc Lond B Biol Sci. 1983;220:141–162.PubMedGoogle Scholar
  35. 35.
    Black JW, Leff P, Shankley NP, Wood J. An operational model of pharmacological agonism: the effect of E/[A], curve shape on agonist dissociation constant estimation.Br J Pharmacol. 1985;84:561–571.PubMedGoogle Scholar
  36. 36.
    Van der Graaf PH, Van Schaick EA, Visser SA, De Greef HJ, Ijzerman AP, Danhof M. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antilipolytic effects of adenosine A(1) receptor agonists in rats: prediction of tissue-dependent efficacy in vivo.J Pharmacol Exp Ther. 1999;290:702–709.PubMedGoogle Scholar
  37. 37.
    Furchgott RF. The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes.Adv Drug Res. 1966;3:21–55.Google Scholar
  38. 38.
    Christ GJ. Determination of agonist dissociation constants in isolated vasculature: equivalence of estimates obtained by the method of partial irreversible receptor inactivation and a novel application of the operational model of pharmacological agonism.Life Sci. 1990;47:1867–1874.PubMedCrossRefGoogle Scholar
  39. 39.
    Welty DF, Schielke GP, Vartanian MG, Taylor CP. Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate.Epilepsy Res. 1993;16:175–181.PubMedCrossRefGoogle Scholar
  40. 40.
    Danhof M, Mandema JW. Modeling of relationships between pharmacokinetics and pharmacodynamics. In: Welling PG, Tse F, eds.Pharmacokinetics. New York: Marcel Dekker, 1994;139–174.Google Scholar
  41. 41.
    Dubey RK, McAllister CB, Inoue M, Wilkinson GR. Plasma binding and transport of diazepam across the blood-brain barrier. No evidence for in vivo enhanced dissociation.J Clin Invest. 1989;84:1155–1159.PubMedCrossRefGoogle Scholar
  42. 42.
    Robinson PJ, Rapoport SI. Kinetics of protein binding determine rates of uptake of drugs by brain.Am J Physiol. 1986;251:R1212-R1220.PubMedGoogle Scholar
  43. 43.
    Rowley M, Kulagowski JJ, Watt AP, et al. Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists.J Med Chem. 1997;40:4053–4068.PubMedCrossRefGoogle Scholar
  44. 44.
    Urien S, Pinquier JL, Paquette B, Chaumet RP, Kiechel JR, Tillement JP. Effect of the binding of isradipine and darodipine to different plasma proteins on their transfer through the blood-brain barrier.J Pharmacol Exp Ther. 1987;242:349–353.PubMedGoogle Scholar
  45. 45.
    Tanaka H, Mizojiri K. Drug-protein binding and blood-brain barrier permeability.J Pharmacol Exp Ther. 1999;288:912–918.PubMedGoogle Scholar
  46. 46.
    Pardridge WM, Sakiyama R, Fierer G. Transport of propanolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug.J Clin Invest. 1983;71:900–908.PubMedCrossRefGoogle Scholar
  47. 47.
    Pardridge WM. Recent advances in blood-brain barrier transport.Annu Rev Pharmacol Toxicol. 1988;28:25–39.PubMedCrossRefGoogle Scholar
  48. 48.
    Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton, FL: CRC Press; 1996.Google Scholar
  49. 49.
    Vorbrodt AW. Ultrastructural cytochemistry of blood-brain barrier endothelia.Prog Histochem Cytochem. 1988;18:1–99.PubMedGoogle Scholar
  50. 50.
    van Bree JB, de Boer AG, Danhof M, Ginsel LA, Breimer DD. Characterization of an “in vitro” blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs.J Pharmacol Exp Ther. 1988;247:1233–1239.PubMedGoogle Scholar
  51. 51.
    van de Waterbeemd H, Camenisch G, Folkers G, Chretien JR, Raevsky OA. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors.J Drug Target. 1998;6:151–165.PubMedGoogle Scholar
  52. 52.
    Oldendorf WH. Lipid solubility and drug penetration of the blood-brain barrier.Proc Soc Exp Biol Med. 1974;147:813–815.PubMedGoogle Scholar
  53. 53.
    Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard.Brain Res. 1970;24:372–376.PubMedCrossRefGoogle Scholar
  54. 54.
    Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability.J Med Chem. 1980;23:682–684.PubMedCrossRefGoogle Scholar
  55. 55.
    Rubin LL, Staddon JM. The cell biology of the blood-brain barrier.Annu Rev Neurosci. 1999;22:11–28.PubMedCrossRefGoogle Scholar
  56. 56.
    Suzuki H, Terasaki T, Sugiyama Y. Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system.Adv Drug Del Rev. 1997;25:257–285.CrossRefGoogle Scholar
  57. 57.
    Scism JL, Powers KM, Artru AA, et al. Effects of probenecid on brain-cerebrospinal fluid-blood distribution kinetics of E-Delta(2)-valproic acid in rabbits.Drug Metab Dispos. 1997;25:1337–1346.PubMedGoogle Scholar
  58. 58.
    Deguchi Y, Nowaza K, Yamada S, Yokoyama Y, Kimura R. Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis. Possible involvement of the monocarboxylic acid transport system.J Pharmacol Exp Ther. 1997;280:551–560.PubMedGoogle Scholar
  59. 59.
    Schinkel AH, Wagenaar E, Mol CAAM, van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs.J Clin Invest. 1996;97:2517–2524.PubMedCrossRefGoogle Scholar
  60. 60.
    Schinkel AH, Smit JJM, van Tellingen O, et al. Disruption of the mouse mdr la P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs.Cell. 1994;77:491–502.PubMedCrossRefGoogle Scholar
  61. 61.
    Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein.Anesthesiology. 2002;96:913–920.PubMedCrossRefGoogle Scholar
  62. 62.
    Uhr M, Steckler T, Yassouridis A, Holsboer F. Penetration of amitriptyline, but not of fluoxitine, into brain is enhanced in mice with blood-brain barrier deficiency due to Mdrla P-glycoprotein gene disruption.Neurospsychopharmacology. 2000;22:380–387.CrossRefGoogle Scholar
  63. 63.
    Mahar Doan KM, Humphreys JE, Webster LO, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs.J Pharmacol Exp Ther. 2002;303:1029–1037.PubMedCrossRefGoogle Scholar
  64. 64.
    Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers.Drug Metab Rev. 2002;34:47–54.PubMedCrossRefGoogle Scholar
  65. 65.
    Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD. Differences in function and structure of the capillary endothelium in gray matter, white matter, and a circumventricular organ of rat brain.Blood Vessels. 1986;23:261–270.PubMedGoogle Scholar
  66. 66.
    Collins JM, Dedrick LD. Distributed model for drug delivery to CSF and brain tissue.J Am Physiol. 1983;14:R303-R310.Google Scholar
  67. 67.
    Davson H, Segal MB. Physiology of the CSF and blood-brain barriers. Boca Raton, FL: CRC Press; 1996.Google Scholar
  68. 68.
    Yu D-W, Gatley SJ, Wolf AP, et al. Synthesis of carbon-11 labeled iodinated cocaine derivatives and their distribution in baboon brain measured using positron emission tomography.J Med Chem. 1992;35:2178–2183.PubMedCrossRefGoogle Scholar
  69. 69.
    Fenstermacher JD, Patlak CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood.Fed Proc. 1974;33:2070–2074.PubMedGoogle Scholar
  70. 70.
    Walker MC, Tong X, Perry H, Alavijeh MS, Patsalos PN. Comparison of serum, cerebrospinal fluid and brain extracellular fluid pharmacokinetics of lamotrigine.Br J Pharmacol. 2000;130:242–248.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations.Pharmacol Rev. 2001;53:569–596.PubMedGoogle Scholar
  72. 72.
    Wong SL, Van Belle K, Sawchuk RJ. Distributional transport kinetics of zidovudine between plasma and brain extracellular fluid and cerebrospinal fluid blood-barriers in the rabbit: investigation on the inhibitory effect of probenecid utilizing microdialysis.J Pharmacol Exp Ther. 1993;264:899–909.PubMedGoogle Scholar
  73. 73.
    Ghersi-Egea JF, Leininger-Muller B, Suleman G, Siest G, Minn A. Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs.J Neurochem. 1994;62:1089–1096.PubMedGoogle Scholar
  74. 74.
    Del Bigio MR. The ependyma: a protective barrier between brain and cerebrospinal fluid.Glia. 1995;14:1–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Cserr HF. Convection of brain interstitial fluid. In: Shapiro K, Marmarou A, Portnoy H, eds.Hydrocephalus. New York: Raven Press, 1984:59–68.Google Scholar
  76. 76.
    Bouw R, Ederoth P, Lundberg J, Ungerstedt U, Nordstrom CH, Hammarlund-Udenaes M. Increased blood-brain barrier permeability of morphine in a patient with severe brain lesions as determined by microdialysis.Acta Anaesthesiol Scand. 2001;45:390–392.PubMedCrossRefGoogle Scholar
  77. 77.
    Bolwig TG, Hertz MM, Paulson OB, Spotoft H, Rafaelsen OJ. The permeability of the blood-brain barrier during electrically induced seizures in man.Eur J Clin Invest. 1977;7:87–93.PubMedCrossRefGoogle Scholar
  78. 78.
    Brosman CF, Claudio L. Brain microvasculature in multiple sclerosis. In: Pardridge, WM, ed.Introduction to the Blood-Brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998:386–400.Google Scholar
  79. 79.
    de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood-brain barrier in neuro-inflammatory diseases.Pharmacol Rev. 1997;49:143–156.PubMedGoogle Scholar
  80. 80.
    Povlishock JT. The pathophysiology of blood-brain barrier dysfunction due to traumatic brain injury. In: Pardridge, WM, ed.Introduction to the Blood-Brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998:441–453.Google Scholar
  81. 81.
    Steward PA, Mikulis D. The blood-brain barrier in brain tumours. In: Pardridge WM, ed.Introduction to the Blood-Brain Barrier: Methodology, Biology, and Pathology. Cambridge, UK: Cambridge University Press; 1998:434–440.Google Scholar
  82. 82.
    de Rick AF, Belpaire FM, Dello C, Bogaert MG. Influence of enhanced AAG concentration on protein binding, pharmacokinetics and anti-arrhythmic effect of lidocaine in the dog.J Pharmacol Exp Ther. 1987;241:289–293.PubMedGoogle Scholar
  83. 83.
    Jolliet P, Simon N, Bree F, et al. Blood-to-brain transfer of various oxicams: effects of plasma binding on their brain delivery.Pharm Res. 1997;14:650–656.PubMedCrossRefGoogle Scholar
  84. 84.
    Lin TH, Sawada Y, Sugiyama Y, Iga T, Hanano M. Effects of albumin and alpha 1-acid glycoprotein on the transport of imipramine and desipramine through the blood-brain barrier in rats.Chem Pharm Bull (Tokyo). 1987;35:294–301.Google Scholar
  85. 85.
    Mandema JW, Sansom LN, Dios-Vièitez MC, Hollander-Jansen M, Danhof M. Pharmacokinetic-pharmacodynamic modelling of the EEG effects of benzodiazepines. Correlation with receptor binding and anticonvulsant activity.J Pharmacol Exp Ther. 1991;257:472–478.PubMedGoogle Scholar
  86. 86.
    Mandema JW, Tukker E, Danhof M. Pharmacokinetic-Pharmacodynamic Modelling of the EEG effects of midazolam in individual rats: influence of rate and route of administration.Br J Pharmacol. 1991;102:663–668.PubMedGoogle Scholar
  87. 87.
    Derendorf H, Hochhaus G, Mollmann H, et al. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids.J Clin Pharmacol. 1993;33:115–123.PubMedGoogle Scholar
  88. 88.
    van Steeg T, Macintyre F, Danhof M, de Lange ECM. The influence of an increase in plasma protein binding on the pharmacokinetics and pharmacodynamics of S(−)-Propranolol. Poster presentation at the Population Approach Group Europe (PAGE), 2005, Pamplona, Spain.Google Scholar
  89. 89.
    Tunblad K, Ederoth P, Gardenfors A, Hammarlund-Udenaes M, Nordstrom CH. Altered brain exposure of morphine in experimental meningitis studied with microdialysis.Acta Anaesthesiol Scand. 2004;48:294–301.PubMedCrossRefGoogle Scholar
  90. 90.
    Tunblad K, Jonsson EN, Hammarlund-Udenaes M. Morphine blood-brain barrier transport is influenced by probenecid co-administration.Pharm Res. 2003;20:618–623.PubMedCrossRefGoogle Scholar
  91. 91.
    Bouw MR, Xie R, Tunblad K, Hammarlund-Udenaes M. Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling.Br J Pharmacol. 2001;134:1796–804.PubMedCrossRefGoogle Scholar
  92. 92.
    Bouw MR, Gardmark M, Hammarlund-Udenaes M. Pharmacokinetic-pharmacodynamic modelling of morphine transport across the blood-brain barrier as a cause of the antinociceptive effect delay in rats—a microdialysis study.Pharm Res. 2000;17:1220–1227.PubMedCrossRefGoogle Scholar
  93. 93.
    Dagenais C, Graff CL, Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice.Biochem Pharmacol. 2004;67:269–276.PubMedCrossRefGoogle Scholar
  94. 94.
    Henthorn TK, Liu Y, Mahapatro M, Ng KY. Active transport of fentanyl by the blood-brain barrier.J Pharmacol Exp Ther. 1999;289:1084–1089.PubMedGoogle Scholar
  95. 95.
    Letrent SP, Pollack GM, Brouwer KR, Brouwer KL. Effect of GF120918, a potent P-glycoprotein inhibitor, on morphine pharmacokinetics and pharmacodynamics in the rat.Pharm Res. 1998;15:599–605.PubMedCrossRefGoogle Scholar
  96. 96.
    Letrent SP, Pollack GM, Brouwer KR, Brouwer KL. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat.Drug Metab Dispos. 1999;27:827–834.PubMedGoogle Scholar
  97. 97.
    Groenendaal D, de Mik D, Nicholls G, et al. Towards a mechanism-based pharmacokinetic/pharmacodynamic model for opioids: influence of P-glycoprotein and apparent permeability in vitro. Submitted, 2005. Jake has AQ out on status.Google Scholar
  98. 98.
    Groenendaal D, de Mik D, Freijer J, et al. Towards a mechanism-based pharmacokinetic/pharmacodynamic model for opioids: combined microdialysis/EEG studies on morphine. Poster presentation at the 4th International Symposium on Microdialysis in Drug Research and Development, Vienna, Austria, 2004.Google Scholar
  99. 99.
    Sills GJ, Kwan P, Butler E, de Lange EC, van den Berg DJ Brodie MJ. P-glycoprotein-mediated efflux of anti-epileptic drugs: preliminary studies in mdrla knockout mice.Epilepsy Behav. 2002;3:427–432.PubMedCrossRefGoogle Scholar
  100. 100.
    Kwan P, Brodie MJ. Potential role of drug transporters in the pathogenesis of medically intractable epilepsy.Epilepsia. 2005;46:224–235.PubMedCrossRefGoogle Scholar
  101. 101.
    Gibbs JP, Adeyeye MC, Yang Z, Shen DD. Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport.Epilepsy Res. 2004;58:53–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Volk HA, Burkhardt K, Potschka H, Chen J, Becker A, Loscher W. Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures.Neuroscience. 2004;123:751–759.PubMedCrossRefGoogle Scholar
  103. 103.
    Marroni M, Marchi N, Cucullo L, Abbott NJ, Signorelli K, Janigro D. Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy.Curr Drug Targets. 2003;4:297–304.PubMedCrossRefGoogle Scholar
  104. 104.
    Seiffert E, Dreier JP, Ivens S, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex.J Neurosci. 2004;24:7829–7836.PubMedCrossRefGoogle Scholar
  105. 105.
    Nitsch C, Klatzo I. Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents.J Neurol Sci. 1983;59:305–322.PubMedCrossRefGoogle Scholar
  106. 106.
    Petito CK, Schaefer JA, Plum F. Ultrastructural characteristics of the brain and blood-brain barrier in experimental seizures.Brain Res. 1977;127:251–267.PubMedCrossRefGoogle Scholar
  107. 107.
    Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy.Epilepsia. 1995;36:1–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Voskuyl RA, Hoogerkamp A, Danhof M. Properties of the convulsive threshold determined by direct cortical stimulation in rats.Epilepsy Res. 1992;12:111–120.PubMedCrossRefGoogle Scholar
  109. 109.
    Hoogerkamp A, Vis PW, Danhof M, Voskuyl RA. Characterization of the pharmacodynamics of several anti-epileptic drugs in a direct cortical stimulation model of anticonvulsant effect in the rat.J Pharmacol Exp Ther. 1994;269:521–528.PubMedGoogle Scholar
  110. 110.
    Radulovic LL, Turck D, von Hodenberg A, et al. Disposition of gabapentin (neurontin) in mice, rats, dogs, and monkeys.Drug Metab Dispos. 1995;23:441–448.PubMedGoogle Scholar
  111. 111.
    Vollmer KO, von Hodenberg A, Kolle EU. Pharmacokinetics and metabolism of gabapentin in rat, dog and man.Arzneimittelforschung. 1986;36:830–839.PubMedGoogle Scholar
  112. 112.
    Doble A. Excitatory amino acid receptors and neurodegeneration.Therapie. 1995;50:319–337.PubMedGoogle Scholar
  113. 113.
    Gerlach M, Desser H, Youdim MB, Riederer P. New horizons in molecular mechanisms underlying Parkinson’s disease and in our understanding of the neuroprotective effects of selegiline.J Neural Transm Suppl. 1996;48:7–21.PubMedGoogle Scholar
  114. 114.
    Gerlach M, Youdim MB, Riederer P. Pharmacology of selegiline.Neurology. 1996;47(suppl 3):S137-S145.PubMedGoogle Scholar
  115. 115.
    Mitchell IJ, Carroll CB. Reversal of parkinsonian symptoms in primates by antagonists of excitatory amino acid transmission: potential mechanisms of action.Neurosci Biobehav Rev. 1997;21:469–475.PubMedCrossRefGoogle Scholar
  116. 116.
    Paschen W. Polyamine metabolism in different pathological states of the brain.Mol Chem Neuropathol. 1992;16:241–271.PubMedCrossRefGoogle Scholar
  117. 117.
    Bernstein HG, Müller M. The cellular localization of the L-ornithine decarboxylase/polyamine system in normal and diseased central nervous systems.Prog Neurobiol. 1999;57:485–505.PubMedCrossRefGoogle Scholar
  118. 118.
    Kauppinen RA, Alhonen LI. Transgenic animals as models in the study of the neurobiological role of polyamines.Prog Neurobiol. 1995;47:545–563.PubMedCrossRefGoogle Scholar
  119. 119.
    Williams K. Modulation and block of ion channels: a new biology of polyamines.Cell Signal. 1997;9:1–13.PubMedCrossRefGoogle Scholar
  120. 120.
    Williams K, Romano C, Dichter MA, Molinoff PB. Modulation of the NMDA receptor by polyamines.Life Sci. 1991;48:469–498.PubMedCrossRefGoogle Scholar
  121. 121.
    Baskaya MK, Rao AM, Prasad MR, Dempsey RJ. Regional activity of ornithine decarboxylase and edema formation after traumatic brain injury.Neurosurgery. 1996;38:140–145.PubMedCrossRefGoogle Scholar
  122. 122.
    Koenig H, Trout JJ, Goldstone AD, Lu CY. Capillary NMDA receptors regulate blood-brain barrier function and breakdown.Brain Res. 1992;588:297–303.PubMedCrossRefGoogle Scholar
  123. 123.
    Poduslo JF, Curran GL. Polyamine modification increases the permeability of proteins at the blood-nerve and blood-brain barriers.J Neurochem. 1996;66:1599–1609.PubMedCrossRefGoogle Scholar
  124. 124.
    Trout JJ, Koenig H, Goldstone AD, Lu CY. Blood-brain barrier breakdown in cold injury. Polyamine signals mediate active stimulation of endocytosis, vesicular transport, and microvillus formation in rat cerebral capillaries.Lab Invest. 1986;55:622–631.PubMedGoogle Scholar
  125. 125.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.Nat Neurosci. 2000;3:1301–1306.PubMedCrossRefGoogle Scholar
  126. 126.
    Ravenstijn P, Merlini M, Hameetman M, et al. Blood-brain barrier permeability in Parkinson’s disease progression using the rotenone rat model. Poster presentation at the 4th International Symposium on Microdialysis in Drug Research and Development, Vienna, Austria, 2004.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  • Elizabeth C. M. de Lange
    • 1
  • Paulien G. M. Ravenstijn
    • 1
  • Dorien Groenendaal
    • 1
  • Tamara J. van Steeg
    • 1
  1. 1.Leiden/Amsterdam Center for Drug Research, Division of Pharmacology, Gorlaeus LaboratoriesLeiden UniversityLeidenThe Netherlands

Personalised recommendations