The AAPS Journal

, Volume 7, Issue 2, pp E353–E360 | Cite as

DARPP-32 mediates the actions of multiple drugs of abuse

  • Per Svenningsson
  • Angus C. Nairn
  • Paul Greengard
Article

Abstract

Drugs of abuse share the ability to enhance dopaminergic neurotransmission in the dorsal and ventral striatum. The action of dopamine is modulated by additional neurotransmitters, including glutamate, serotonin and adenosine. All these neurotransmitters regulate the phosphorylation state of Dopaminal serine/threonine protein phosphatase, PP-1. Phosphorylatine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32). Phosphorylation at Thr34 by protein kinase A converts DARPP-32 into a potent inhibitor of the multifunctioon at Thr75 by Cdk5 converts DARPP-32 into an inhibitor of protein kinase A. The state of phosphorylation of DARPP-32 at Thr34 also depends on the phosphorylation state of Ser97 and Ser130, which are phosphorylated by CK2 and CK1, respectively. By virtue of regulation of these 4 phosphorylation sites, and through its ability to modulate the activity of PP-1 and protein kinase A, DARPP-32 plays a key role in integrating a variety of biochemical, electrophysiological, and behavioral responses controlled by dopamine and other neurotransmitters. Importantly, there is now alarge body of evidence that supports a key role for DARPP-32-dependent signaling in mediating the actions of multiple drugs of abuse including cocaine, amphetamine, nicotine, caffeine, LSD, PCP, ethanol and morphine.

Keywords

protein phosphorylation psychostimulants dopamine striatum 

References

  1. 1.
    Walaas SI, Aswad DW, Greengard P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions.Nature. 1983;301:69–71.PubMedCrossRefGoogle Scholar
  2. 2.
    Hemmings HC Jr, Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1.Nature. Aug 9–15, 1984;310(5977):503–505.PubMedCrossRefGoogle Scholar
  3. 3.
    Ouimet CC, Langley-Gullion KC, Greengard P. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen.Brain Res. 1998;808:8–12.PubMedCrossRefGoogle Scholar
  4. 4.
    da Cruz e Silva EF, Fox CA, Ouimet CC, Gustafson E, Watson SJ, Greengard P. Differential expression of protein phosphatase 1 isoforms in mammalian brain.J Neurosci. 1995;15:3375–3389.PubMedGoogle Scholar
  5. 5.
    Girault JA Jr, Hemmings HC Jr, Williams KR, Nairn AC, Greengard P. Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II.J Biol Chem. 1989;264:21748–21759.PubMedGoogle Scholar
  6. 6.
    Desouits F, Cohen D, Nairn AC, Greengard P, Girault JA. Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase I in vitro and in vivo.J Biol Chem. 1995;270:8772–8778.CrossRefGoogle Scholar
  7. 7.
    Desdouits F, Siciliano JC, Greengard P, Girault JA. Dopamine- and cAMP-regulated phosphoprotein DARPP-32: phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin.Proc Natl Acad Sci USA. 1995;92:2682–2685.PubMedCrossRefGoogle Scholar
  8. 8.
    Bibb JA, Snyder GL, Nishi A, et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons.Nature. 1999;402:669–671.PubMedCrossRefGoogle Scholar
  9. 9.
    Ouimet CC, Jr, Miller PE Jr, Hemmings HC Jr, Walaas SI, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III Immunocytochemical localization.J Neurosci. 1984;4:111–124.PubMedGoogle Scholar
  10. 10.
    Yoshida M, Precht W. Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers.Brain Res. 1971;32:225–228.PubMedCrossRefGoogle Scholar
  11. 11.
    Beckstead RM, Cruz CJ. Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat.Neuroscience. 1986;19:147–158.PubMedCrossRefGoogle Scholar
  12. 12.
    Gerfen CR 3rd, Young WS 3rd. Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study.Brain Res. 1988;460:161–167.PubMedCrossRefGoogle Scholar
  13. 13.
    Kawaguchi Y, Wilson CJ, Emson PC. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin.J Neurosci. 1990;10:3421–3438.PubMedGoogle Scholar
  14. 14.
    Anderson KD, Reiner A. Immunohistochemical localization of DARPP-32 in striatal projection neurons and striatal interneurons: implications for the localization of D1-like dopamine receptors on different types of striatal neurons.Brain Res. 1991;568:235–243.PubMedCrossRefGoogle Scholar
  15. 15.
    Ouimet CC, Greengard P. Distribution of DARPP-32 in the basal ganglia: an electron microscopic study.J Neurocytol. 1990;19:39–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Carboni E, Imperato A, Perezzani L, Di Chiara G. Amphetamine, cocaine, phencyclidine and nomifensive increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats.Neuroscience. 1989;28:653–661.PubMedCrossRefGoogle Scholar
  17. 17.
    Parsons LH, Koob GF, Weiss F. Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine.J Pharmacol Exp Ther. 1995;274:1182–1191.PubMedGoogle Scholar
  18. 18.
    Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission.Annu Rev Pharmacol Toxicol. 2004;44:269–296.PubMedCrossRefGoogle Scholar
  19. 19.
    Stoof JC, Kebabian JW. Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum.Nature. 1981;294:366–368.PubMedCrossRefGoogle Scholar
  20. 20.
    Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS. Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling.Trends Pharmacol Sci. 2003;24:486–492.PubMedCrossRefGoogle Scholar
  21. 21.
    Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine.J Neurosci. 1997;17:8147–8155.PubMedGoogle Scholar
  22. 22.
    Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons.Science. 1990;250:1429–1432.PubMedCrossRefGoogle Scholar
  23. 23.
    Surmeier DJ, Song WJ, Yan Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons.J Neurosci. 1996;16:6579–6591.PubMedGoogle Scholar
  24. 24.
    Aizman O, Brismar H, Uhlen P, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons.Nat Neurosci. 2000;3:226–230.PubMedCrossRefGoogle Scholar
  25. 25.
    Svenningsson P, Lindskog M, Ledent C, et al. Regulation of the phosphorylation of the dopamine- and cAMP-regulated phosphoprotein of 32 kDa in vivo by dopamine D1, dopamine D2, and adenosine A2A receptors.Proc Natl Acad Sci USA. 2000;97:1856–1860.PubMedCrossRefGoogle Scholar
  26. 26.
    Lindskog M, Svenningsson P, Fredholm BB, Greengard P, Fisone G. Activation of dopamine D2 receptors decreases DARPP-32 phosphorylation in striatonigral and striatopallidal projection neurons via different mechanisms.Neuroscience. 1999;88:1005–1008.PubMedCrossRefGoogle Scholar
  27. 27.
    Nishi A, Bibb JA, Snyder GL, Higashi H, Nairn AC, Greengard P. Amplification of dopaminergic signaling by a positive feedback loop.Proc Natl Acad Sci USA. 2000;97:12840–12845.PubMedCrossRefGoogle Scholar
  28. 28.
    Halpain S, Girault JA, Greengard P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices.Nature. 1990;343:369–372.PubMedCrossRefGoogle Scholar
  29. 29.
    Nishi A, Bibb JA, Matsuyama S, et al. Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A.J Neurochem. 2002;81:832–841.PubMedCrossRefGoogle Scholar
  30. 30.
    Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors.Neuropharmacology. 1999;38:1431–1476.PubMedCrossRefGoogle Scholar
  31. 31.
    Tallaksen-Greene SJ, Kaatz KW, Romano C, Albin RL. Localization of mGluR1a-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons.Brain Res. 1998;780:210–217.PubMedCrossRefGoogle Scholar
  32. 32.
    Testa CM, Friberg IK, Weiss SW, Standaert DG. Immunohistochemical localization of metabotropic glutamate receptors mGluR1a and mGluR2/3 in the rat basal ganglia.J Comp Neurol. 1998;390:5–19.PubMedCrossRefGoogle Scholar
  33. 33.
    Nishi A, Liu F, Matsuyama S, et al. Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling.Proc Natl Acad Sci USA. 2003;100:1322–1327.PubMedCrossRefGoogle Scholar
  34. 34.
    Liu F, Ma XH, Ule J, et al. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors.Proc Natl Acad Sci USA. 2001;98:11062–11068.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu F, Virshup DM, Nairn AC, Greengard P. Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors.J Biol Chem. 2002;277:45393–45399.PubMedCrossRefGoogle Scholar
  36. 36.
    Nishi A, Watanabe Y, Higashi H, Tanaka M, Nairn AC, Greengard P. Glutamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades.Proc Natl Acad Sci USA. 2005;102:1199–1204.PubMedCrossRefGoogle Scholar
  37. 37.
    Barnes NM, Sharp T. A review of central 5-HT receptors and their function.Neuropharmacology. 1999;38:1083–1152.PubMedCrossRefGoogle Scholar
  38. 38.
    Svenningsson P, Tzavara ET, Liu F, Fienberg AA, Nomikos GG, Greengard P. DARPP-32 mediates serotonergic neurotransmission in the forebrain.Proc Natl Acad Sci USA. 2002;99:3188–3193.PubMedCrossRefGoogle Scholar
  39. 39.
    Schiffmann SN, Jacobs O, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study.J Neurochem. 1991;57:1062–1067.PubMedCrossRefGoogle Scholar
  40. 40.
    Svenningsson P, Lindskog M, Rognoni F, Fredholm BB, Greengard P, Fisone G. Activation of adenosine A2A and dopamine D1 receptors stimulates cyclic AMP-dependent phosphorylation of DARPP-32 in distinct populations of striatal projection neurons.Neuroscience. 1998;84:223–228.PubMedCrossRefGoogle Scholar
  41. 41.
    Lindskog M, Svenningsson P, Pozzi L, et al. Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine.Nature. 2002;418:774–778.PubMedCrossRefGoogle Scholar
  42. 42.
    Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence.Nat Rev Neurosci. 2001;2:695–703.PubMedCrossRefGoogle Scholar
  43. 43.
    Nestler EJ. Molecular basis of long-term plasticity underlying addiction.Nat Rev Neurosci. 2001;2:119–128.PubMedCrossRefGoogle Scholar
  44. 44.
    Fienberg AA, Hiroi N, Mermelstein PG, et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission.Science. 1998;281:838–842.PubMedCrossRefGoogle Scholar
  45. 45.
    Svenningsson P, Tzavara ET, Carruthers R, et al. Diverse psychotomimetics act through a common on signaling pathway.Science. 2003;302:1412–1415.PubMedCrossRefGoogle Scholar
  46. 46.
    Fienberg AA, Greengard P. The DARPP-32 knockout mouse.Brain Res Brain Res Rev. 2000;31:313–319.PubMedCrossRefGoogle Scholar
  47. 47.
    Nairn AC, Svenningsson P, Nishi A, Fisone G, Girault JA, Greengard P. The role of DARPP-32 in the actions of drugs of abuse.Neuropharmacology 2004;47:14–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Valjent E, Pascoli V, Svenningsson P, et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum.Proc Natl Acad Sci USA. 2005;102:491–496.PubMedCrossRefGoogle Scholar
  49. 49.
    Bibb JA, Chen J, Taylor JR, et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5.Nature. 2001;410:376–380.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu FC, Graybiel AM. Spatiotemporal dynamics of CREB phosphorylation: transient versus sustained phosphorylation in the developing striatum.Neuron. 1996;17:1133–1144.PubMedCrossRefGoogle Scholar
  51. 51.
    Hagiwara M, Alberts A, Brindle P, et al. Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB.Cell. 1992;70:105–113.PubMedCrossRefGoogle Scholar
  52. 52.
    Yan Z, Feng J, Fienberg AA, Greengard P. D(2) dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons.Proc Natl Acad Sci USA. 1999;96:11607–11612.PubMedCrossRefGoogle Scholar
  53. 53.
    Svenningsson P, Fienberg AA, Allen PB, et al. Dopamine D(1) receptor-induced gene transcription is modulated by DARPP-32.J Neurochem. 2000;75:248–257.PubMedCrossRefGoogle Scholar
  54. 54.
    Hiroi N, Fienberg AA, Haile CN, et al. Neuronal and behavioral abnormalities in striatal function in DARPP-32-mutant mice.Eur J Neurosci. 1999;11:1114–1118.PubMedCrossRefGoogle Scholar
  55. 55.
    Zachariou V, Benoit-Marand M, Allen PB, et al. Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP32 or Inhibitor 1.Biol Psychiatry. 2002;51:612–620.PubMedCrossRefGoogle Scholar
  56. 56.
    Heyser CJ, Fienberg AA, Greengard P, Gold LH. DARPP-32 knockout mice exhibit impaired reversal learning in a discriminated operant task.Brain Res. 2000;867:122–130.PubMedCrossRefGoogle Scholar
  57. 57.
    Schoffelmeer AN, Hansen HA, Stoof JC, Mulder AH. Blockade of D-2 dopamine receptors trongly enhances the potency of enkephalins to inhibit dopamine-sensitive adenylate cyclase in rat neostriatum: involvement of delta- and mu-opioid receptors.J Neurosci. 1986;6:2235–2239.PubMedGoogle Scholar
  58. 58.
    Georges F, Stinus L, Bloch B, Le Moine C. Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum.Eur J Neurosci. 1999;11:481–490.PubMedCrossRefGoogle Scholar
  59. 59.
    Lindskog M, Svenningsson P, Fredholm B, Greengard P, Fisone G. Mu- and delta-opioid receptor agonists inhibit DARPP-32 phosphorylation in distinct populations of striatal projection neurons.Eur J Neurosci. 1999;11:2182–2186.PubMedCrossRefGoogle Scholar
  60. 60.
    Role LW, Berg DK. Nicotinic receptors in the development and modulation of CNS synapses.Neuron. 1996;16:1077–1085.PubMedCrossRefGoogle Scholar
  61. 61.
    Wonnacott S. Presynaptic nicotinic ACh receptors.Trends Neurosci. 1997;20:92–98.PubMedCrossRefGoogle Scholar
  62. 62.
    Ramirez-Latorre J, Crabtree G, Turner J, Role L. Molecular composition and biophysical characteristics of nicotinic receptors. In: Arneric SP, Brioni JD, eds.Neuronal nicotinic receptors: pharmacology and therapeutic opportunities. New York: Wiley-Liss, Inc, 1999:43–64.Google Scholar
  63. 63.
    Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C. Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum.J Neurosci. 2002;22:8785–8789.PubMedGoogle Scholar
  64. 64.
    Nomikos GG, Schilstrom B, Hildebrand BE, Panagis G, Grenhoff J, Svensson TH. Role of alpha7 nicotinic receptors in nicotine dependence and implications for psychiatric illness.Behav Brain Res. 2000;113:97–103.PubMedCrossRefGoogle Scholar
  65. 65.
    Hamada M, Higashi H, Nairn AC, Greengard P, Nishi A. Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons.J Neurochem. 2004;90:1094–1103.PubMedCrossRefGoogle Scholar
  66. 66.
    Aghajanian GK, Marek GJ. Serotonin and hallucinogens.Neuropsychopharmacology. 1999;21:16S-23S.PubMedGoogle Scholar
  67. 67.
    Grailhe R, Waeber C, Dulawa SC, et al. Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor.Neuron. 1999;22:581–591.PubMedCrossRefGoogle Scholar
  68. 68.
    Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents.Life Sci. 1984;35:2505–2511.PubMedCrossRefGoogle Scholar
  69. 69.
    Sawa A, Snyder SH. Schizophrenia: diverse approaches to a complex disease.Science. 2002;296:692–695.PubMedCrossRefGoogle Scholar
  70. 70.
    Carlezon WA Jr, Wise RA. Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex.J Neurosci. 1996;16:3112–3122.PubMedGoogle Scholar
  71. 71.
    Druhan JP, Rajabi H, Stewart J. MK-801 increases locomotor activity without elevating extracellular dopamine levels in the nucleus accumbens.Synapse. 1996;24:135–146.PubMedCrossRefGoogle Scholar
  72. 72.
    Pierce RC, Meil WM, Kalivas PW. The NMDA antagonist, dizocilpine, enhances cocaine reinforcement without influencing mesoaccumbens dopamine transmission.Psychopharmacology (Berl). 1997;133:188–195.CrossRefGoogle Scholar
  73. 73.
    Svenningsson P, Le Moine C, Fisone G, Fredholm BB. Distribution, biochemistry and function of striatal adenosine A2A receptors.Prog Neurobiol. 1999;59:355–396.PubMedCrossRefGoogle Scholar
  74. 74.
    Ledent C, Vaugeois JM, Schiffmann SN, et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor.Nature. 1997;388:674–678.PubMedCrossRefGoogle Scholar
  75. 75.
    Risinger FO, Freeman PA, Greengard P, Fienberg AA. Motivational effects of ethanol in DARPP-32 knock-out mice.J Neurosci. 2001;21:340–348.PubMedGoogle Scholar
  76. 76.
    Maldve RE, Zhang TA, Ferrani-Kile K, et al. DARPP-32 and regulation of the ethanol sensitivity of NMDA receptors in the nucleus accumbens.Nat Neurosci. 2002;5:641–648.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  • Per Svenningsson
    • 1
  • Angus C. Nairn
    • 1
    • 2
  • Paul Greengard
    • 1
  1. 1.Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew York
  2. 2.Department of PsychiatryYale University School of MedicineNew Haven

Personalised recommendations